
T-Check: Bug Finding for Sensor Networks

Peng Li
School of Computing, University of Utah, USA

peterlee@cs.utah.edu

John Regehr
School of Computing, University of Utah, USA

regehr@cs.utah.edu

ABSTRACT
Sensor nodes are resource poor and failure-prone. Sensor
networks are composed of many such nodes that are often
hard to physically reach and that are connected by unreliable
wireless links. Together, these factors make sensor network
debugging into a challenging activity, and in fact it is not
uncommon for a deployed sensornet to encounter sporadic
faults that are effectively impossible to locate, reproduce,
and fix.

We developed T-Check, a tool that uses random walks
and explicit state model checking to find safety and liveness
errors in sensor network applications running on TinyOS.
By building upon TOSSIM—an event-driven simulator that
abstracts away interrupt-driven concurrency and other low-
level hardware interaction—T-Check loses the ability to de-
tect certain low-level errors, but gains enough scalability to
detect distributed errors such as a collection tree protocol’s
failure to properly repair when a node dies. We have used
T-Check to find previously unknown bugs in TinyOS.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]:
Real-time and Embedded Systems; D.2.4 [Software Engi-
neering]: Software/Program Verification—Validation

General Terms
Performance, Verification

Keywords
sensor networks, T-Check, model checking, random walk,
TinyOS, safety, liveness, event-driven

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’10, April 12–16, 2010, Stockholm, Sweden.
Copyright 2010 ACM 978-1-60558-955-8/10/04 ...$10.00.

1. INTRODUCTION
Creating and deploying a highly reliable sensor network

is difficult, and it is not uncommon for a real network to
have a data yield well below 100%. For example, the me-
dian node in Werner-Allen et al.’s volcano monitoring net-
work [29] successfully downloaded 68.5% of detected events
to a base-station. Of course, there are many kinds of root
cause for a network’s failure to deliver data: hardware fail-
ure, battery problems, software bugs, network link quality
and variability, etc.

We developed T-Check to support early detection of soft-
ware bugs in sensor network applications. Early detection is
important because it can be very painful to find and fix a bug
that sneaks into a deployment. We believe that bugs survive
laboratory sensornet testing for the simple reason that the
deployment environment is inevitably different from a con-
trolled testbed or simulator. The apparent inadequacy of
testing motivated us to choose an approach based on state
space exploration: exhaustive enumeration of the states that
a sensor network can find itself in. This approach can—in
principle—find all possible violations of some kinds of pro-
gram properties, regardless of the characteristics of the en-
vironment the sensornet is eventually deployed in.

T-Check employs model checking and random exploration
of a sensornet’s state space to find violations of safety and
liveness properties. Safety properties, of the form “the sen-
sornet never does X,” can be specified by developers, and
we also inherit a large number of compiler-generated safety
properties from Safe TinyOS [7]. For example, a typical
Safe TinyOS assertion would be “the array index is in the
range 0..9.” Liveness properties, of the form “the sensornet
eventually does Y,” must be provided by developers. Typ-
ical examples are “the buffer eventually becomes unlocked”
or “the node eventually finds a place in the routing tree.”

Due to complications such as interrupt-driven concurrency
and free-running timer registers, the state space of even a
single sensor node may be extremely large. For example, the
[mc]square model checker [28] performs explicit-state check-
ing of binaries for AVR microcontrollers. Although this ap-
proach has been used to check small industrial applications,
it is unclear how to scale it up to networks of sophisticated
sensornet programs. Therefore, we decided it was necessary
to simplify the problem by abstracting away some low-level
details. We settled on TOSSIM [22] as a suitable basis for
T-Check.

TOSSIM is an event-driven simulator for networks of nodes
running TinyOS; it gains simplicity and speed by not sup-
porting concurrent execution and by emulating hardware

devices at the level of a TinyOS interface, rather than at
the level of hardware registers. This design means that
TOSSIM cannot find, for example, timing errors, call stack
overflows, and race conditions caused by interrupt preemp-
tions. On the other hand, a coarse-grained, event-based ex-
ecution model lends itself well to efficient state space ex-
ploration. Even so, in some cases we found TOSSIM to be
too high-level to support effective bug-finding, and so we ex-
tended the ADC, serial, and SPI subsystems to model more
low-level behavior.

The research questions that motivate our work include:
What safety and liveness properties should be checked in
sensornet executions? How can we efficiently explore the
very large state space of a sensornet? Is it a good tradeoff
to abstract away low-level details in order to find higher-
level bugs? What sources of non-determinism in sensornet
execution should be used as the basis for state space explo-
ration? What are the tradeoffs between random testing and
model checking? Can we effectively find bugs in the heavily
used and generally high-quality TinyOS 2 code base?

Using T-Check, we found 12 previously unknown bugs in
TinyOS 2. Most of these have been confirmed by developers,
fixed in the TinyOS source code repository, and will be part
of the upcoming 2.1.1 release.

2. BACKGROUND
This section provides some background on the systems

and techniques on which T-Check is built.

2.1 TinyOS
TinyOS [15] is a wireless sensornet operating system. Its

mechanisms and abstractions are designed for ultra-low-power
microcontrollers with limited RAM and no hardware sup-
port for memory isolation. TinyOS typically runs at 1–
8MHz on 16-bit microcontrollers that have 4–10 kB of SRAM
and 40–128 kB of flash memory [25].

The operating system uses components as the unit of soft-
ware composition [15]. Like objects, components couple
code and data. Unlike objects, however, they can only be
instantiated at compile time. TinyOS components, written
in a dialect of C called nesC [8], have interfaces which de-
fine downcalls (“commands”) and upcalls (“events”). Upcalls
and downcalls are bound statically: the absence of function
pointers simplifies call graph analysis. Each TinyOS compo-
nent is either a module, containing code, or a configuration:
a container wiring together other modules and configura-
tions.

The TinyOS core has a highly restricted, purely event-
driven execution model. Using a single stack, it supports
only interrupt handlers and run-to-completion deferred pro-
cedure calls called tasks. Tasks are similar to bottom-half
handlers in UNIX implementations: they run at lower pri-
ority than interrupts and do not preempt each other.

Since TinyOS uses a single stack, computations cannot
block. Instead, a split-phase idiom is used to permit con-
currency during potentially long-running operations. For
example, to send a packet, an application would invoke a
Send command, which initiates the send operation and then
returns. Later, the network subsystem delivers a sendDone

event to the application, notifying it that the operation has
finished.

2.2 TOSSIM
TOSSIM [22] is a simulator for TinyOS wireless sensor

networks; it achieves high performance and good scalability
in three ways. First, it compiles TinyOS source code into
native host platform code, as opposed to simulating a sensor
node at the instruction level. Second, it employs high-level
device models that are very efficient, for example dealing
with an entire radio packet at a time rather than simulating
byte-wise or bit-wise transmission over the medium. Third,
TOSSIM has a non-preemptive execution model: it does not
simulate interrupts in a direct fashion.

As far as T-Check is concerned, the most important prop-
erty of TOSSIM is that its simulation events execute atom-
ically. In other words—unlike real sensornet nodes—code
running on TOSSIM is never preempted by interrupts. This
change to the TinyOS execution model greatly reduces the
size of the state space that T-Check needs to explore. The
cost of this choice is that certain kinds of errors, including
timing errors, concurrency errors, and bugs in low-level de-
vice drivers cannot be detected by TOSSIM, and therefore
not by T-Check either.

2.3 Safe TinyOS
Since nesC is an unsafe language and TinyOS nodes lack

memory protection hardware, pointer and array bugs lead
to corrupted RAM and difficult debugging. Some microcon-
trollers place their registers in the bottom of the memory
map, exacerbating the problem. On these architectures, null
pointer dereferences corrupt the register file.

Safe TinyOS [7] uses the Deputy compiler [6] to enforce
type and memory safety using static and dynamic checks.
Deputy is based on a dependent type system that exploits
array bounds information already stored in memory. There-
fore, unlike other memory-safe versions of C, it has no RAM
overhead on a Harvard-architecture microcontroller.

From the point of view of T-Check, the main benefit that
Safe TinyOS provides is the large number of assertions that
it inserts into application code. These serve as inline safety
property checks. T-Check can look for violations of these
properties without additional help from the user.

2.4 Model Checking
A model checker [5] explores the state space of a computer

system. For any given state, it is possible to define a predi-
cate over that state: a formula that evaluates to true or false,
indicating that the system in that state either holds or fails
to hold some interesting property. An execution is a path
through the state space that corresponds to an execution of
the actual system.

A safety property is true if something bad never happens.
If any state in an execution violates the safety property, the
entire execution violates that property. A liveness property
holds if something good will eventually happen. An exe-
cution satisfies a liveness property if the execution will en-
counter a live state in finite time. Conversely, an execution
violates a liveness property if it contains an infinite sequence
of states that does not hold the property.

T-Check builds on Killian et al.’s work [18], which is based
on the idea that liveness violations can be detected heuristi-
cally by looking for sufficiently long violations of the prop-
erty. Based on this intuition, liveness violations are sepa-
rated into two categories: transient liveness violations that
may eventually reach a live state, and dead liveness viola-

Figure 1: T-Check uses both random walks and
depth-bounded model checking to look for violations
of safety and liveness properties in sensor network
applications

tions that will never reach a live state. The critical transition
is the last state transition that is transiently dead. Finding
the critical transition is useful because this point of no re-
turn usually has something to do with the root cause of the
liveness violation.

3. T-Check
T-Check is a state space exploration tool that builds on

TOSSIM. TOSSIM is a scriptable simulator, typically driven
by a Python program. T-Check inherits this structure: a
script is used to specify the number of nodes, their topol-
ogy, etc.

T-Check supports two major modes of operation. First,
it can act as a random tester. Second, it can act as a model
checker whose overall strategy builds on work by Killian et
al. [18]. In model-checking mode, T-Check runs in distinct
phases:

1. Random execution is used to get the sensor network
past its initialization phase and into a steady state.

2. Depth-bounded explicit state model checking is used
to exhaustively explore the state space of the system
up to some depth.

3. Random walks through the state space are used to find
additional safety violations and to verify that potential
liveness violations are real.

4. Additional random walks are used to find the critical
transitions leading to liveness violations.

Figure 1 illustrates these steps. The following subsections
describe T-Check in more detail.

3.1 Safety and Liveness Properties
T-Check exploits the type safety checks inserted by Safe

TinyOS and also any user-written assertions already present
in the source code. Liveness properties and additional safety

properties may be provided by developers; T-Check ensures
that each property holds at every state transition.

Table 1 shows the properties that we checked in TinyOS
applications. We developed these properties by reading code,
papers, and other documentation. It is likely that the au-
thors or maintainers of these subsystems could do a better
job than we did at characterizing the most important prop-
erties. To be integrated into T-Check, a property must be
expressed as executable code; some examples are given in
Section 4.

3.2 Exposing Non-determinism
Although TOSSIM incorporates some randomness, for ex-

ample in its network model, it is generally a deterministic
simulator. The firing times for events are determined by
the expected real-world latencies of actions being simulated,
and TOSSIM has a single mechanism for choosing the next
event: it fires the event with the smallest time.

In contrast to TOSSIM, to successfully explore the state
space of a sensornet—regardless of whether model check-
ing or random walk is used—T-Check should exploit all
available sources of non-determinism. If a non-deterministic
choice is missed, we will fail to explore some part of the
state space and may miss bugs. On the other hand, if non-
determinism is added where it was not present in the original
system, we will explore false paths and report errors that do
not actually exist.

The first kind of non-determinism that T-Check uses is
communication non-determinism. For example, a sent packet
is non-deterministically delivered or dropped; a received packet
is non-deterministically successful or corrupted. At the im-
plementation level, each call to the radio model has to be
replaced with a non-deterministic choice operator. In model
checking mode, the non-deterministic choice operator ex-
plores both alternatives. In random walk mode, the non-
deterministic choice operator returns a random alternative.

The second kind of non-determinism supported by T-Check
is coarse-grain node-level non-determinism, which includes
node arrival, death, and reboot. The third kind of non-
determinism is event ordering non-determinism, which ex-
ploits the lack of ordering guarantees within a single TinyOS
node. For example, if an application initiates two split-
phase operations, such as sending a packet and reading a
block from flash memory, the completion events can arrive
in either order. However, events cannot be arbitrarily re-
ordered. For example, within a node, if an application posts
two tasks, the TinyOS scheduler guarantees that they run
in the order in which they were posted.

To model the TinyOS execution semantics, T-Check main-
tains multiple event queues for each node that it simulates;
Figure 2 illustrates this. Events from different queues may
be arbitrarily reordered, but events in a single queue must
execute in order. The event at the head of a queue is en-
abled, and the enable set for a node is just the set of all
enabled events.

To determine the proper mapping of events to queues, we
observed that the basic source of non-determinism in mi-
crocontroller execution is interrupts. Thus, T-Check main-
tains one queue for each interrupt-generating device, in ad-
dition to a queue for the TinyOS pending tasks. Recall
that T-Check, like TOSSIM, does not support preemptive
interrupts. Rather, interrupts are modeled as atomic events
whose firing may be interleaved with the firing of tasks and

Application Type Property

Serial Stack Liveness ∀n ∈ nodes : ¬n.bufZeroLocked ∧ ¬n.bufOneLocked

Eventually, each of two buffers becomes unlocked
Safety ∀n ∈ nodes : ¬n.isCurrentBufferLocked() ∧ PKT COMING IN → RECV BEGIN

The current buffer, if unlocked, should successfully receive an incoming packet
CTP Liveness ∀n ∈ nodes : n(.parent)∗ 6= n

Eventually, there is no loop in the routing tree
Liveness ∀n ∈ nodes : n has no path to sink ∨ n ∈ trees

Eventually, all nodes that have a path to a sink become part of some collection tree
Drip Liveness ∀n ∈ nodes : (n.valueCache =)∗ VALUE

Eventually, all nodes have consistent values
Dip Liveness ∀n ∈ nodes : (n.valueCache =)∗ VALUE

Eventually, all nodes have consistent values
Dhv Liveness ∀n ∈ nodes : (n.valueCache =)∗ VALUE

Eventually, all nodes have consistent values
FTSP Liveness ∀n ∈ nodes : (n.synchronized =)∗ TRUE

Eventually, all nodes achieve time synchronization

Table 1: TinyOS 2 properties that we checked

Figure 2: T-Check maintains multiple event queues
per node to model event-ordering non-determinism

of other interrupt events.
TOSSIM models only the timer interrupt. While creating

T-Check, we extended TOSSIM to model more interrupt
sources: ADC (analog to digital converter), UART (serial
port) transmit and receive, and SPI (serial peripheral in-
terface). These extensions provide two benefits in terms of
bug-finding. First, they permit additional low-level device
driver components to be tested. Second, they permit non-
deterministic executions driven by these interrupt sources to
be explored by T-Check.

Since T-Check does not support preemptive execution of
interrupts, and since (on a real mote) interrupts must always
be enabled in between executing adjacent tasks, we do not
need to model the processor’s global interrupt enable flag.
On the other hand, the individual enable bits associated
with interrupt sources must be modeled in order to avoid
exploring infeasible parts of the state space. For example,
on AVR platforms the ADC interrupt can only fire when the
ADIE hardware bit is set. T-Check models this behavior and
considers events in the ADC event queue to be enabled only
when the bit is set.

3.3 Depth-bounded Explicit State Model
Checking

T-Check is an execution driven model checker: it actu-
ally runs the code, as opposed to symbolically evaluating

it. T-Check uses stateless depth-bounded depth-first search
with partial order reduction. Illustrated by Figure 1, start-
ing from an initial state or steady state, all reachable states
are explored using DFS. Stateless execution means that
backtracking is implemented by returning to the initial or
steady state and re-executing down some new path, as op-
posed to returning to a saved checkpoint other than the ini-
tial state. This approach is relatively simple to implement
and conserves RAM, at the expense of wasting CPU time in
redundant re-execution.

A näıve exploration of the state space of a distributed
system is wasteful. For example, consider a network of two
nodes that both have pending ADC interrupt handlers. The
model checker has two choices: it can execute node 0’s in-
terrupt handler and then node 1’s, or vice versa. However,
since there is no dependency between the ADC interrupt
handlers on two different nodes, the final system state is the
same regardless of which handler runs first. Partial order
reduction (POR) [10] is a family of strategies for avoiding
exploration of redundant states. T-Check implements a form
of static POR, which requires advance knowledge of which
state transitions are potentially dependent. The following
rules are used:

• A pair of transitions on the same node is always de-
pendent.

• A pair of transitions on different nodes is independent
unless the events are a matched send/receive pair.

The goal of T-Check is to explore all non-redundant states
of the distributed system that can be reached within a pre-
determined number of state transitions. It works as follows.
Initially, the sleep set and transition stack are empty. The
sleep set supports POR and the transition stack records the
sequence of state transitions currently being explored. Also,
the initial state for the run is saved so that the model checker
can return to it later.

A model checking step starts by checking if any safety
property is violated. If so, T-Check prints an error message
and dumps the current transition stack, which serves as a
counterexample for the property. Next, T-Check builds a
ready set : the set difference of the union of all nodes’ enable

sets and the sleep set. If the ready set is empty, the system
backtracks. Otherwise, T-Check removes an element t from
this set, pushes t onto the transition stack, and executes
the corresponding code. Next, all events dependent on t are
removed from the sleep set. Finally, as long as the depth
of the transition stack does not exceed the pre-determined
depth bound, the model checking step code is recursively
invoked.

To backtrack, either because the depth bound is reached
or the ready set is empty, T-Check pops the last transition
from the transition stack, inserts it into the sleep set, re-
stores the system to its saved (initial or steady) state, and
then executes the state transitions determined by the con-
tents of the transition stack. Once all state transitions have
been performed, the model checking step operation is in-
voked.

Resetting the sensornet to a saved state requires restoring
all nodes’ state variables, register values, and event queues.
We modified the nesC compiler to generate code to help save
and restore nodes’ states.

3.4 Randomly Exploring the State Space
The advantage of model checking is that it guarantees that

any bugs within the depth bound can be found. However,
the exponential size of the space imposes strong limits on the
utility of this technique. In practice, random execution is a
useful counterpart to model checking [12]. As shown in Fig-
ure 1, when the system reaches the depth bound, T-Check
can also continue with a random walk phase to catch more
safety errors and identify the potential liveness violations.
Our random walk algorithm is to repeat these steps until a
safety bug is found or until the user gets tired of waiting.

First, check if any safety properties are violated. If so,
dump the current event trace and terminate. Otherwise,
for each liveness property and each node, clear the violation
count for any satisfied property and increment the violation
count for any violated property. If the violation count for
any liveness property exceeds a heuristic threshold (100,000
events has worked well for us), signal a liveness violation.
Finally, choose a random event from a random node’s enable
set and execute it.

A tricky aspect of random testing is assigning appropriate
probabilities to various event choice operators. If probabil-
ities are chosen poorly, testing will waste time in uninter-
esting parts of the state space and miss interesting parts.
By default, T-Check assigns uniform probabilities to all en-
abled events, since during each state, the enable event set for
each node is similar, and thus the whole simulation execu-
tion topology is not irregular, resulting in relatively uniform
trace sampling probability. Although this has worked well
so far, in the future we plan to look for other probability
assignments that find property violations more rapidly. T-
Check also permits users to specify their own probability
distributions if they so choose.

T-Check implements Killian et al.’s critical transition al-
gorithm [18]. This is a binary search where each transition
in a liveness-violating trace is used as the starting point for
a random walk that tests for eventual liveness. The critical
transition occurs between the last state from which a live
state can be reached, and the subsequent state, which is the
first state that is definitely dead. Once an execution trace is
considered as liveness-violating, T-Check will dump a trace
starting from the first transition of random walk to critical

Figure 3: The T-Check toolchain

transition, making users better track down the root cause.

3.5 Finding Short Error Traces
Error traces found while model checking tend to be short,

and in fact if the model checker runs to completion, the
shortest possible error trace for each violated property is
guaranteed to be among the errors found. On the other
hand, random execution tends to lead to long error traces,
making it difficult for users to understand the sequence of
events that lead to the problem.

To shorten an error trace found during random execution,
T-Check uses an algorithm loosely inspired by delta debug-
ging [30]. At all times, the shortest-known trace to the error
is saved. First, one of the state transitions in the error trace
is chosen as a change point. All transitions before the change
point come from the saved error trace, whereas transitions
after it are chosen randomly. The change point is chosen
heuristically: we use both an exponential search and pure
random choice. If the new trace reaches the length of the
saved trace without finding the error, the new trace is dis-
carded and the current iteration ends. If the new trace finds
the error more quickly, it becomes the new shortest trace and
the current iteration ends. The algorithm terminates after a
fixed number of iterations. Another heuristic we have found
to be effective is to bias execution following the choice point
to give increased probability to events on the node that is
expected to show the property violation. Although it is sim-
ple, when iterated tens of thousands of times this technique
is quite effective at reducing the length of error traces.

4. USING T-CHECK
Figure 3 shows the T-Check toolchain; it is used as follows.

First, if a developer wishes to provide high-level properties,
these take the form of nesC components providing the Sim-

Property interface, which has two commands: safetyProp-
ertyCheck and livenessPropertyCheck. T-Check provides
a script that automatically wires property components into
the application. The first property listed in Table 1, which
requires that the serial stack eventually unlocks its buffers,
is implemented as:

Component Safety Liveness

MultihopOscilloscopeC 1 0
LinkEstimatorP 0 1

SerialDispatcherP 1 1
DipSummaryP 2 0
DipVersionP 1 0
MHPacketM 1 0

DhvSummaryP 1 0
DhvVBitP 2 0
DhvHSumP 1 0

Table 2: Summary of bugs found by T-Check

command bool SimProperty.livenessPropertyCheck() {
return !receiveState.bufZeroLocked &&

!receiveState.bufOneLocked;
}

Checks that inspect the state of multiple nodes are slightly
more complex and the sim_set_node utility function is needed
to change the current context. For example, the third prop-
erty listed in Table 1 can be implemented as:

command bool SimProperty.livenessPropertyCheck() {
int tmpMote = sim_node(), mote;
for (mote = 0; mote < sim_simulated_mote_num(); mote++) {
sim_set_node (mote);
if (sim_mote_forms_loop (mote)) {

sim_set_node (tmpMote);
return FALSE;

}
}
sim_set_node (tmpMote);
return TRUE;

}

Second, a developer configures T-Check using an extended
version of TOSSIM’s configuration mechanism, via a Python
script. New configuration parameters include probabilities
used in random execution, depth of model checking, whether
to use partial order reduction, etc.

Finally, the application is compiled as usual, for example
by make micaz safe sim, and run. If a T-Check-enabled
application encounters a safety violation, it will dump an
execution trace leading to the violation. If a liveness vio-
lation is found, T-Check searches for the critical transition
and dumps an execution trace leading to this transition.

5. RESULTS
This section demonstrates the effectiveness of T-Check as

a bug-finding tool and evaluates its performance.

5.1 Bugs Found
We evaluated T-Check by using it to look for bugs in

TinyOS applications from the publicly accessible tinyos-

2.x and tinyos-2.x-contrib CVS repositories. Table 2
summarizes our results: we found 12 previously unknown
bugs, some of them in core services and in applications that
have been used for several years.

5.1.1 Serial Stack Bug #1
Typically, a sensor network contains one or more base sta-

tion nodes that communicate occasionally or continuously
with a PC using a serial link. To support this, TinyOS has a

typedef struct {
uint8_t which:1; // Indicates current buffer
uint8_t bufZeroLocked:1; // buffer 0 locked?
uint8_t bufOneLocked:1; // buffer 1 locked?
uint8_t state:2;

} recv_state_t;
recv_state_t receiveState;

message_t* messagePtrs[2] =
{ &messages[0], &messages[1] };

bool isCurrentBufferLocked() {
// BUG -- the switch cases are reversed
return (receiveState.which) ?
receiveState.bufZeroLocked : receiveState.bufOneLocked;

}

Figure 4: Code for serial bug #1

serial stack [11]. The SerialDispatcherP component aggre-
gates incoming bytes into packets and dispatches them to the
appropriate higher-level component. It uses double buffering
so that a node can receive data into one buffer while applica-
tion code is processing the other buffer. Figure 4 shows the
data structure representing this component’s internal state,
and also a utility function for checking whether the current
buffer is locked. A buffer is locked if it is being used by the
application or the serial stack, and unlocked when it is idle
and ready to be used.

We used T-Check to test the following safety property: if
a packet is arriving over the wire, and the current buffer
is unlocked, it should be possible to successfully receive
the packet and deliver it to the application level. T-Check
found a violation of this property when buffer0 is the cur-
rent buffer, and is receiving a serial packet from the PC.
When packet reception ends, the current buffer is switched
to buffer1 and the serial stack posts a task to notify the
application level that buffer0 is ready to be used.

There is a period of time, then, when buffer0 is locked
while the application is processing the serial data. If, during
this time period, the serial stack starts receiving more data,
it attempts to lock buffer1 so that it can be filled with data.
However, isCurrentBufferLocked (shown in Figure 4) con-
tains a flaw that causes it to erroneously report the lock sta-
tus of buffer0 instead of buffer1, causing the serial stack to
fail to receive the new incoming packet, violating the safety
property.

The fix is obvious: the if and else branches of isCurrent-
BufferLocked need to be switched around. The TinyOS 2
maintainers committed this fix.

5.1.2 Serial Stack Bug #2
This bug is also in SerialDispatcherP. Figure 5 shows

the actions taken by the serial stack when the last byte of a
packet is received. If the receive was successful, and if the
serial stack is not currently waiting for the application to
process the other buffer, a buffer swap is performed and a
task is posted which will signal application-level code that
a packet was received.

A high-level liveness property for serial stack is that even-
tually, both buffer0 and buffer1 become unlocked. The
serial stack contains a bug that permits it to deadlock, vio-
lating this property. The bug is triggered by a failed packet

async event
void ReceiveBytePacket.endPacket(error_t result) {
uint8_t postsignalreceive = FALSE;
atomic {

if (!receiveTaskPending && result == SUCCESS) {
postsignalreceive = TRUE;
... code omitted ...

}
// BUG -- the buffer never gets unlocked when
// the if condition is not true

}
if (postsignalreceive){

post receiveTask();
}

}

Figure 5: Code for serial stack bug #2

command void* DipSend.getPayloadPtr() {
// returns NULL if message is busy
if(busy) {
return NULL;

}
return call NetAMSend.getPayload(&am_msg, 0);

}

command error_t DipDecision.send() {
dip_msg_t* dmsg;
dmsg = (dip_msg_t*) call SummarySend.getPayloadPtr();

// BUG -- dsmg can be NULL here
dmsg->type = ID_DIP_SUMMARY;

... code omitted ...
}

Figure 6: Code for DIP bug #1

receive, for example due to a failing CRC. In this case,
the buffer never gets unlocked, nor does the buffer swap-
ping logic execute. Thus, all subsequent serial packets find
the current buffer locked, and they are dropped. The fix
is to release the lock on the current buffer when an erro-
neous packet is received. The TinyOS 2 maintainers have
committed this fix.

5.1.3 DIP Bug #1
DIP [23] is a data discovery and dissemination protocol.

Figure 6 shows the code to send the DipSummary message,
which is to summarize and hash the version information of
the data items within a range. The getPayloadPtr com-
mand may return NULL, causing the subsequent line to
dereference a NULL pointer with unpredictable results (or
with a safety violation, if Safe TinyOS is being used). The
fix—committed by the TinyOS 2 maintainers—is to add a
check which fails the send command when getPayloadPtr

returns NULL.

5.1.4 More DIP Bugs
Figure 7 shows the code of findRangeShadow, which calcu-

lates left and right indices in the array shadowEstimates for
subsequent hash computation. This code contains two bugs
that permits out-of-bounds array accesses to occur. The fix
for these problems is slightly involved and we describe the

void findRangeShadow(dip_index_t* left,
dip_index_t *right) {

// Precondition: shadowEstimates is an array
// with UQCOUNT_DIP elements

... code omitted ...
// Here, even if (LBound + len) <= UQCOUNT_DIP,
// then we can’t guarantee that RBound does not
// go over UQCOUNT_DIP
if(LBound + len > UQCOUNT_DIP) { RBound = UQCOUNT_DIP; }
else { RBound = highIndex + len; }

... code omitted ...
for(i = LBound ; i + len <= RBound; i++) {

est1 = shadowEstimates[i];
// When the RBound is violated,
// this access is out-of-bound
est2 = shadowEstimates[i + len];

... code omitted ...
}
*left = highIndex;
*right = highIndex + len;

}

Figure 7: Code for DIP bugs #2 and #3

process of finding and fixing these bugs in three steps.
First, a developer changed

est2 = shadowEstimates[i + len]

to

est2 = shadowEstimates[i + len - 1]

If the maximum of RBound is exactly UQCOUNT_DIP, then
there would be no out-of-bounds access. T-Check then found
a trace where RBound can go over UQCOUNT_DIP, causing an-
other safety violation.

Second, a developer changed the

LBound + len > UQCOUNT_DIP

test to

highIndex + len > UQCOUNT_DIP

After this change, is it guaranteed that RBound is not be-
yond UQCOUNT_DIP. Although this fix eliminated one array
bounds violation, T-Check subsequently found a case where
the residual value in right was incorrect, causing an array
access error in a different function.

Finally, to avoid the incorrect value of right, i + len <=

RBound was changed to i + len < RBound, and shadowEst-

imates[i + len - 1] was restored to shadowEstimates[i

+ len]. T-Check has found no further problems.

5.1.5 A Link Estimator Bug
The Collection Tree Protocol (CTP) [9] computes anycast

routes to a single or a small number of designated sinks in
a wireless sensor network. Figure 8(a) shows an example of
a collection tree computed by CTP during a T-Check run.
The first liveness property that we wrote for CTP is that
eventually, all cycles are removed from the collection tree.
We found no violations of that property.

Figure 8: Example collection tree. Neighbors are
connected by dotted lines, parents and children are
connected by solid lines. (a) denotes a collection
tree computed by CTP; (b) shows the desired re-
paired tree after node failure; (c) shows the actual
collection tree after node failure, for a buggy version
of TinyOS

void updateNeighborEntryIdx(uint8_t idx, uint8_t seq) {
// packetGap means the packet number gap between
// currently received packet and last received packet
uint8_t packetGap;

// BUG -- this test may never be true
if (packetGap >= BLQ_PKT_WINDOW) {

updateNeighborTableEst(NeighborTable[idx].ll_addr);
}

}

Figure 9: Code LinkEstimator bug

The second property that we wrote checks that for any
node that is transitively connected to some sink, it should
eventually become part of some collection tree. Our initial
CTP tests found no violations of this property either. How-
ever, at one point a CTP developer committed a change
to the TinyOS link estimation component that prevented a
dead node’s children from joining the CTP tree, as shown
in Figure 8(c), as opposed to the desired behavior shown in
Figure 8(b). T-Check found that the critical transition was
the death of node 1.

The code responsible for this problem is shown in Figure 9.
The problem is that to rejoin the network, the updateNeigh-
borTableEst function must be invoked, but for this to hap-
pen, a number of packets must be lost. In an insufficiently
lossy network, packetGap never reaches BLQ_PKT_WINDOW and
the node remains disconnected forever. We discovered this
bug in parallel with other developers.

5.1.6 An Array Bounds Bug
Figure 10 shows code that relies on a timing race to re-

set an array index in the MultihopOscilloscope application.
The timer fired event initiates a sensor read under the as-
sumption that the readDone event will happen before the
next timer arrives. If the timer expires first, it is possi-
ble for the variable reading to be used as an array index

typedef struct oscilloscope {
... code omitted ...
uint16_t readings[NREADINGS];

} oscilloscope_t;
oscilloscope_t local;

uint8_t reading;

event void timer.fired() {
if (reading == NREADINGS) {

... code omitted ...
reading = 0;

}
if (call Read.read() != SUCCESS)
fatal_problem();

}

event void Read.readDone(error_t result, uint16_t data) {
... code omitted ...
// BUG when reading >= NREADINGS
local.readings[reading++] = data;

}

Figure 10: Code for a bug in MultihopOscilloscope

0 2 4 6 8 10 12 14
10

−4

10
−2

10
0

10
2

10
4

10
6

DFS BOUND

E
la

ps
ed

 T
im

e
(S

ec
on

ds
)

RadioCountToLeds W/O POR
RadioCountToLeds W/T POR
MultihopOscilloscope W/O POR
MultihopOscilloscope W/T POR
TestSerial W/O POR
TestSerial W/T POR

Figure 11: Time to model check three applications
with and without partial order reduction. For Ra-
dioCountToLeds and MultihopOscilloscope, a two-
node topology was used. TestSerial is single-mote
application and therefore fails to benefit from POR.

when it is larger than NREADINGS−1. If the Read interface
is wired directly to a sensor, there is no bug: the second
call to Read.read will fail because the resource is still busy,
and the extra readDone event cannot happen. On the other
hand, if Read is wired through a resource arbiter, as it is on
the MicaZ platform, then the extra read command succeeds
after being placed into the arbiter’s queue, creating the pos-
sibility that two readDone events will be signaled before the
timer has a chance to reset the index, causing the out-of-
bounds access. This bug is also present in the Oscilloscope
and TestMultihopLqi applications.

5.2 Effectiveness of Partial Order Reduction
Figure 11 clearly shows the exponential relation between

the depth bound and the time required to run the model
checker. For a 13-step model checking run, POR speeds up
T-Check by a factor of 449 for MultihopOscilloscope and a
factor of 138 for RadioCountToLeds.

5.3 Comparing TOSSIM, Random Walk, and
Model Checking

Table 3 compares bug-finding power of TOSSIM against
T-Check in both model-checking and random walk modes,
for two-node and eight-node topologies. For TOSSIM with
Safe TinyOS, we ran 500,000 steps. For T-Check in model
checking mode, we randomly executed 30,000 steps to get
a steady state, then performed model checking with a 50-
step bound, timing out after 10 hours. For T-Check in ran-
dom walk mode the maximum number of steps was irrele-
vant since the bug was always found. Since only the model
checker is deterministic, the results for TOSSIM and for T-
Check in random walk mode are averaged over 25 runs.

TOSSIM only found four of the 10 safety bugs, and its
traces were always longer than our shortened traces. There
are two factors at work. First, T-Check models each sen-
sornet node at a slightly more detailed level than TOSSIM
(while still falling well short of modeling all the detail of
a real mote). Second, T-Check exploits the abundant non-
determinism in sensornet executions, whereas TOSSIM is
largely deterministic.

We were surprised to find that random testing out-performs
model checking in terms of bug-finding power. It is possible
that additional optimizations to our model checker, such as
exploiting the independence of some pairs of events inside
a node, or implementing dynamic POR, would reverse this
trend. As things stand, the main advantage of model check-
ing is that if it finds an error, the event trace leading to that
error is guaranteed to be the shortest one.

5.4 Unchecked Code
Table 4 summarizes the kinds of code that T-Check does

and does not check. The main components that we miss are
the drivers for timers and for the CC2420 radio chip. All
of these components are heavily-used and seem quite solid
in practice. Even so, it would be worthwhile devising ways
to locate any residual bugs in them, for example using the
[mc]square model checker for AVR object code.

6. RELATED WORK
Our work is most closely related to MaceMC [18]. Like

TinyOS, Mace provides an event-driven infrastructure for
constructing distributed systems. Unlike TinyOS, but like
TOSSIM, Mace’s events run to completion, providing a good
match for an explicit state model checker. T-Check di-
rectly implements MaceMC’s algorithm for finding the crit-
ical transition, and has adapted Mace’s overall blend of ran-
dom testing and model checking.

Harbor [21], t-kernel [13], and Safe TinyOS [7] all aim to
catch memory safety errors in sensor network applications
by adding runtime safety checks. T-Check is complemen-
tary to these efforts: regardless of how safety checks are
added, a state space explorer provides a good way to look
for violations of them.

KleeNet [27] uses symbolic analysis to generate test cases
for sensor network code, and has been used to find new bugs.
KleeNet and T-Check each have advantages and disadvan-
tages; it would be interesting to find out which bugs we
found can also be found using KleeNet, and vice versa.

EnviroLog [24] automatically and accurately records all
events generated by lower-layer and can replay them for sys-
tem tuning and performance evaluation of sensornets. Tra-

cePoint [4] and NodeMD [20] both use user-provided anno-
tations and logging to effectively detect, trace, and debug
the software faults in sensor network. Dustminer [17] and
Khan et al.’s work [16] apply data mining techniques to logs
to detect and catch complex interactive bugs.

Nguyet and Soffa [26] looked at ways to represent the in-
ternal structure of TinyOS applications. This kind of work
should be directly useful to efforts like T-Check, for example
to support inference of independent tasks and interrupts on
the same node to perform better partial order reduction.
Similarly, Kothari et al. [19] inferred the state machines
hidden inside TinyOS applications. These machines proba-
bly abstract away too many details to be directly useful in
model checking, but they may provide convenient states for
T-Check’s high-level property specifications to use.

TinyOS interface contracts [1] add many safety conditions
to TinyOS applications. We would have liked to use T-
Check to look for contract violations, but significant work
would have been required to port contracts to TinyOS 2.

Symbolic model checkers like BLAST [3] and SLAM [2]
generate abstract models from source code, and reason about
them. In contrast, execution-driven model checkers like
Verisoft [10] and Java Pathfinder [14] execute the code di-
rectly. T-Check is an example of the latter family of model
checkers.

7. CONCLUSION
We have presented T-Check, a tool that exploits both ex-

plicit state model checking and random walks to find bugs in
sensor network applications running on TinyOS. T-Check
offers users a good value proposition: by exploiting safety
checks inserted by Safe TinyOS, users can find bugs without
any extra annotation effort. However, if users provide addi-
tional, higher level safety and liveness properties, these can
also be checked. User-specified properties may be in terms
of a single node (e.g., “packets are eventually received”) or in
terms of the entire network (e.g., “eventually, all nodes are
part of the routing tree”). We have used T-Check to find
12 previously unknown bugs in TinyOS 2.1, and we plan to
make T-Check available to the sensor network community
as open-source software.

8. ACKNOWLEDGMENTS
The authors would like to thank Adam Dunkels (our shep-

herd), David Gay, Phil Levis, Eric Mercer, Raimondas Sas-
nauskas, Bastian Schlich, and Matthias Woehrle for much
useful feedback on our work. This material is based upon
work supported by the National Science Foundation under
Grant No. 0615367.

9. REFERENCES
[1] Will Archer, Philip Levis, and John Regehr. Interface

contracts for TinyOS. In Proc. of the Intl. Conf. on
Information Processing in Sensor Networks
(IPSN’07), SPOTS Track, Cambridge, MA, April
2007.

[2] Thomas Ball and Sriram K. Rajamani. The SLAM
project: Debugging system software via static
analysis. In Proc. of the 29th ACM Symp. on
Principles of Programming Languages (POPL),
Portland, OR, USA, January 2002.

Component Safe TOSSIM T-Check Model Check T-Check Random Walk Shortest Trace
(Bug Type) 2-node 8-node 2-node 8-node 2-node 8-node 8-node

SerialDispatcherP N/A N/A 50 50 2,280 2,280 110
(Reversed Switch) (100) (100)

MultihopOscilloscopeC N/A N/A 104 N/A 89,273 39,964 111
(OOB) (1,081,717)

DipSummaryP N/A N/A 1,139 156 33,883 14,150 1,464
(NULL pointer) (1,139) (16,108,781)
DipSummaryP 7,206 4,236 252 46 11,821 3,729 1,332

(OOB #1) (252) (46)
DipSummaryP 7,164 27,866 158 146 11,787 34,339 2,831

(OOB #2) (75,683) (488,537)
DipSummaryP 7,229 28,782 N/A N/A 11,935 40,611 3,246

(OOB #3)
DhvHSumP N/A N/A 4,102 N/A 20,743 41,960 3,090

(NULL pointer) (9,770,648)
DhvSummaryP N/A N/A 63 151 11,187 11,293 685
(NULL pointer) (63) (88,810,681)

DhvVBitP N/A N/A 1,231 728 65,557 47,362 3,534
(NULL pointer) (10,067,253) (1,232,914,546)

DhvVBitP 19,565 23,354 2,880 140 10,607 7,384 2,891
(OOB) (593,827) (26,536,472)

Table 3: Comparing the bug-finding ability of TOSSIM and T-Check in model checking and random execution
modes, for two-node and eight-node topologies, for each safety bug that we found. The primary metric is the
length of the trace to the bug; for model checking results we also give the total number of events explored,
in parentheses. “N/A” means the bug could not be found.

Applications Hardware Only Simulation Only Both

chips/atm128(2/307) chips/atm128/sim(2/397) lib/serial(5/1083), lib/timer(4/267)
TestSerial chips/atm128/timer(2/252) chips/atm128/timer/sim(2/564) chips/atm128/timer(1/160)

chips/atm128/pins(2/42) chips/atm128/pins/sim(1/24) apps/tests/TestSerial(1/75)
system(2/168) lib/tossim(2/178) system(1/101), platforms(2/43)

chips/atm128/adc(2/100) chips/atm128/adc/sim(2/132) lib/net/ctp(7/1375)
chips/atm128/timer(7/513) chips/atm128/timer/sim(4/748) lib/serial(5/1083)

chips/atm128(2/307) chips/atm128/sim(2/397) chips/atm128/adc(1/85), system(10/677)
MultihopOscilloscope chips/atm128/pins(5/141) chips/atm128/pins/sim(1/24) chips/atm128/timer(1/160)

chips/cc2420(12/2494) lib/tossim(4/980) apps/MultihopOscilloscope(1/185)
system(6/331) lib/tossim(3/216) lib/net/4bitle(1/496)

platforms(2/89) platforms(2/43)
lib/timer(2/168) lib/timer(3/200)

chips/atm128/timer(6/380) chips/atm128/timer/sim(1/415) lib/net/drip(4/249), lib/timer(3/200)
chips/atm128/pins(5/141) chips/atm128/pins/sim(1/24) chips/atm128/timer(1/160)

TestDissemination chips/cc2420(12/2494) lib/tossim(4/980) system(6/384)
system(6/331) lib/tossim(3/216) TrickleTimerMilliC.nc(1/179)

platforms(2/89) platforms(2/43)
lib/timer(2/168) apps/tests/TestDissemination(1/70)

chips/atm128/timer(6/380) chips/atm128/timer/sim(1/415) lib/net/dip(8/898), lib/timer(3/200)
chips/atm128/pins(5/141) chips/atm128/pins/sim(1/24) chips/atm128/timer(1/160)

TestDip chips/cc2420(12/2494) lib/tossim(4/980) system(6/384)
system(6/331) lib/tossim(3/216) TrickleTimerMilliC.nc(1/179)

platforms(2/89) platforms(2/43)
lib/timer(2/168) apps/tests/TestDip(1/400)

chips/atm128/timer(6/380) chips/atm128/timer/sim(1/415) lib/net/dhv(10/1205), lib/timer(3/200)
chips/atm128/pins(5/141) chips/atm128/pins/sim(1/24) chips/atm128/timer(1/160)

TestDhv chips/cc2420(12/2494) lib/tossim(4/980) system(6/384)
system(6/331) lib/tossim(3/216) TrickleTimerMilliC.nc(1/179)

platforms(2/89) platforms(2/43)
lib/timer(2/168) apps/tests/TestDhv(1/406)

chips/atm128/timer(6/380) chips/atm128/timer/sim(1/415) lib/ftsp(1/399), lib/timer(4/267)
chips/atm128/pins(5/141) chips/atm128/pins/sim(1/24) chips/atm128/timer(1/160)

TestFtsp chips/cc2420(13/2671) lib/tossim(5/1229) system(6/384)
system(6/331) lib/tossim(3/216) platforms(2/43)

platforms(2/89) apps/tests/TestFtsp(1/53)
lib/timer(1/101)

Table 4: Summary of the number of modules, and total lines of code, from various directories in the TinyOS
tree. “Hardware-only” modules do not run in TOSSIM and are not checked by T-Check. “Simulation-only”
modules do not run on mote platforms. The remaining modules run on motes and in TOSSIM/T-Check.

[3] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and
Rupak Majumdar. The software model checker Blast:
Applications to software engineering. Intl. Journal on
Software Tools for Technology Transfer, 9(5–6),
October 2007.

[4] Qing Cao, Tarek Abdelzaher, John Stankovic, Kamin
Whitehouse, and Liqian Luo. Declarative tracepoints:
A programmable and application independent
debugging system for wireless sensor networks. In
Proc. of the 6th ACM Conf. on Embedded Networked
Sensor Systems (SenSys), Raleigh, NC, USA,
November 2008.

[5] E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 8:244–263, April 1986.

[6] Jeremy Condit, Matthew Harren, Zachary Anderson,
David Gay, and George C. Necula. Dependent types
for low-level programming. In Proc. of the 16th
European Symp. on Programming (ESOP), Braga,
Portugal, March–April 2007.

[7] Nathan Cooprider, William Archer, Eric Eide, David
Gay, and John Regehr. Efficient memory safety for
TinyOS. In Proc. of the 5th ACM Conf. on Embedded
Networked Sensor Systems (SenSys), pages 205–218,
Sydney, Australia, November 2007.

[8] David Gay, Phil Levis, Robert von Behren, Matt
Welsh, Eric Brewer, and David Culler. The nesC
language: A holistic approach to networked embedded
systems. In Proc. of the ACM SIGPLAN 2003 Conf.
on Programming Language Design and Implementation
(PLDI), pages 1–11, San Diego, CA, June 2003.

[9] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson,
David Moss, and Philip Levis. Collection tree
protocol. In Proc. of the 7th ACM Conference on
Embedded Networked Sensor Systems (SenSys),
Berkeley, CA, USA, November 2009.

[10] Patrice Godefroid. Model checking for programming
languages using Verisoft. In Proc. of the Symp. on
Principles of Programming Languages, pages 174–186,
Nice, France, January 1997.

[11] Ben Greenstein and Philip Levis. TinyOS Extension
Proposal (TEP) 113: Serial Communication, 2006.
http://www.tinyos.net/tinyos-2.x/doc/html/

tep113.html.

[12] Alex Groce and Rajeev Joshi. Random testing and
model checking: Building a common framework for
nondeterministic exploration. In Proc. of the 6th Intl.
Workshop on Dynamic Analysis (WODA), Seattle,
WA, USA, July 2008.

[13] Lin Gu and John A. Stankovic. t-kernel: Providing
reliable OS support to wireless sensor networks. In
Proc. of the 4th ACM Conf. on Embedded Networked
Sensor Systems (SenSys), Boulder, CO, November
2006.

[14] Klaus Havelund and Thomas Pressburger. Model
checking Java programs using Java PathFinder. Intl.
Journal on Software Tools for Technology Transfer,
2(4), March 2000.

[15] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar,
David Culler, and Kristofer Pister. System

architecture directions for networked sensors. In Proc.
of the 9th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), pages 93–104, Cambridge, MA, November
2000.

[16] Mohammad Maifi Khan, Tarek Abdelzaher, and
Kamal Kant Gupta. Towards diagnostic simulation in
sensor networks. In Proc. of the Intl. Conf. on
Distributed Computing in Sensor Systems (DCOSS),
Santorini Island, Greece, June 2008.

[17] Mohammad Maifi Khan, Hieu Khac Le, Hossein
Ahmadi, Tarek F. Abdelzaher, and Jiawei Han.
Dustminer: Troubleshooting interactive complexity
bugs in sensor networks. In Proc. of the 6th ACM
Conf. on Embedded Networked Sensor Systems
(SenSys), Raleigh, NC, USA, November 2008.

[18] Charles Killian, James W. Anderson, Ranjit Jhala,
and Amin Vahdat. Life, death, and the critical
transition: Detecting liveness bugs in systems code. In
Proc. of the 4th Symp. on Networked Systems Design
and Implementation (NSDI), Cambridge, MA, April
2007.

[19] Nupur Kothari, Todd Millstein, and Ramesh
Govindan. Deriving state machines from TinyOS
programs using symbolic execution. In Proc. of the 7th
Intl. Conf. on Information Processing in Sensor
Networks (IPSN 2008), St. Louis, MO, 2008.

[20] Veljko Krunic, Eric Trumpler, and Richard Han.
NodeMD: Diagnosing node-level faults in remote
wireless sensor systems. In Proc. of the 5th
International Conference on Mobile Systems,
Applications, and Services (Mobisys), San Juan,
Puerto Rico, June 2007.

[21] Ram Kumar, Eddie Kohler, and Mani Srivastava.
Harbor: software-based memory protection for sensor
nodes. In Proc. of the 6th Intl. Conf. on Information
Processing in Sensor Networks (IPSN07), Cambridge,
MA, USA, 2007.

[22] Philip Levis, Nelson Lee, Matt Welsh, and David
Culler. TOSSIM: Accurate and scalable simulation of
entire TinyOS applications. In Proc. of the 1st ACM
Conf. on Embedded Networked Sensor Systems
(SenSys), pages 126–137, Los Angeles, CA, November
2003.

[23] Kaisen Lin and Philip Levis. Data discovery and
dissemination with DIP. In Proc. of the 7th Intl. Conf.
on Information Processing in Sensor Networks
(IPSN08), pages 433–444, St. Louis, MO, USA, April
2008.

[24] Liqian Luo, Tian He, Gang Zhou, Lin Gu, Tarek F.
Abdelzaher, and John A. Stankovic. Achieving
repeatability of asynchronous events in wireless sensor
networks with EnviroLog. In Proc. of the 25th Conf.
on Computer Communications (INFOCOM),
Barcelona, Spain, April 2006.

[25] Moteiv. Telos rev. B datasheet, 2005.
http://www.moteiv.com.

[26] Nguyet T. M. Nguyen and Mary Lou Soffa. Program
representations for testing wireless sensor network
applications. In Proc. of the Workshop on Domain
Specific Approaches to Software Test Automation
(DoSTA’07), Dubrovnik, Croatia, 2007.

[27] Raimondas Sasnauskas, Olaf Landsiedel,
Muhammad Hamad Alizai, Carsten Weise, Stefan
Kowalewski, and Klaus Wehrle. KleeNet: Discovering
insidious interaction bugs in wireless sensor networks
before deployment. In Proc. of the 9th ACM/IEEE
International Conference on Information Processing in
Sensor Networks (IPSN), Stockholm, Sweden, April
2010.

[28] Bastian Schlich. Model Checking of Software for
Microcontrollers. Dissertation, RWTH Aachen

University, Aachen, Germany, June 2008.

[29] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson,
Jonathan Lees, and Matt Welsh. Fidelity and yield in
a volcano monitoring sensor network. In Proc. of the
7th USENIX Symp. on Operating Systems Design and
Implementation (OSDI), Berkeley, CA, USA,
November 2006.

[30] Andreas Zeller and Ralf Hildebrandt. Simplifying and
isolating failure-inducing input. IEEE Transactions on
Software Engineering, 28(2):183–200, February 2002.

