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Abstract—The growing scale of concurrency requires auto-
mated abstraction techniques to cut down the effort in concurrent
system analysis. In this paper, we show that the high degree of be-
havioral symmetry present in GPU programs allows CUDA race
detection to be dramatically simplified through abstraction. Our
abstraction techniques is one of automatically creating parametric
flows—control-flow equivalence classes of threads that diverge
in the same manner—and checking for data races only across
a pair of threads per parametric flow. We have implemented
this approach as an extension of our recently proposed GKLEE
symbolic analysis framework and show that all our previous
results are dramatically improved in that (i) the parametric flow-
based analysis takes far less time, and (ii) because of the much
higher scalability of the analysis, we can detect even more data
race situations that were previously missed by GKLEE because
it was forced to downscale examples to limit analysis complexity.
Moreover, the parametric flow-based analysis is applicable to
other programs with SPMD models.

Index Terms—GPU programming, Data Races, Formal Anal-
ysis, Parameterized Reasoning

I. INTRODUCTION

GPUs represent an exciting platform for parallelization,
as they are readily available to almost everyone, and offer
impressive speedups on many problems. Unfortunately, the
detection and elimination of bugs in GPU programs is a serious
productivity impediment, with undetected bugs being worse.
We focus on one important class of bugs in this paper—
namely, data races (we also detect deadlocks—elaborated
later). A data race in a concurrent program occurs when two
concurrent accesses (one of which is a write access) occurs
on a data variable, resulting in an unpredictable final value.
Data races can not only affect a program’s final answer—it can
also allow a compiler to perform completely illegal transfor-
mations, because many compilers are known to aggressively
transform programs assuming data-race freedom.

Conventional GPU debuggers [1], [2], [3] are ineffective
at finding and root-causing races. One has to be lucky to
have picked the right set of inputs to have triggered data
races; then run the right set of thread and warp schedules
to have caused a racing access; then be lucky to actually
discern a data corruption amidst the final result. Many formal
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and semi-formal analysis tools have recently been proposed
for GPU program analysis; they employ a combination of
static/dynamic [4] or symbolic [5], [6], [7] analysis.

This paper is an extension of our symbolic approach to GPU
program analysis published recently in [8] and supported by
our recently released tool GKLEE. GKLEE employs a formal
analysis approach that is very easy to use for practitioners,
yet effective at finding deep-seated bugs. A GKLEE user
writes standard C++ CUDA programs, indicating some of the
program variables to be symbolic (the rest are assumed to be
concrete variables). These programs are compiled into LLVM
byte-code, with GKLEE serving as a symbolic virtual machine.
When GKLEE runs such a byte-code program, it generates
and records constraints relating the values of symbolic vari-
able. Conditional expressions in the C++ code (e.g., switch
statements) generate constraints covering both outcomes of a
branch; these are solved by instantiating the symbolic variables
to cover all feasible branching options (or as per user-control
of how much to cover). The result is that users automatically
obtain path-coverage to the desired degree. GKLEE also writes
out these cases into test files that then form test suites to be
run on any platform, ensuring high coverage. Because of the
recent growth in the power of SMT-solvers used to solve these
constraints [9], a tool such as GKLEE is able to handle non-
trivial SDK kernel functions.

This paper addresses a major drawback of all the semi-
formal tools described so far—including GKLEE: these tools
model and solve the data-race detection problem over the
explicitly specified number of GPU threads. This makes these
tools difficult to apply in many situations in supercomputing
where many program modules (e.g., library modules) often
assume a certain minimum number of threads to be involved,
where these minimum numbers themselves are very large.
While it may be possible to manually downscale the num-
ber of threads, unfortunately many program modules do not
document how such downscalings of size parameters can be
done consistently (if at all that is feasible for a particular
implementation). Thus, automatically handling large numbers
of threads is a necessity.

In this paper, we provide an extension of GKLEE that
exploits thread symmetry and provides a way to analyze GPU
programs containing large (bounded) numbers of threads inSC12, November 10-16, 2012, Salt Lake City, Utah, USA
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real kernels. In a nutshell, our method partitions the space of
executions of a GPU program into parametric flow equivalence
classes (PFE), and models the race analysis problem over two
parametric threads in one PFE equivalence class. This analysis
method over parametric flows has been implemented in a new
version of GKLEE called GKLEEp:
• GKLEEp has found all the data-races found by GKLEE,

plus many new ones that GKLEE missed (because we had
to deliberately keep thread-population sizes low under
GKLEE).

• GKLEEp represents a major revision of GKLEE to effi-
ciently represent PFE classes; yet, its basic operation of
finding these equivalence classes uses the same symbolic
analysis methods as used in GKLEE, hence inherits all
powerful symbolic facilities from GKLEE.

• In the best case (e.g., in kernels without loops), GKLEEp

produces the most impressive results, by modeling race-
checking over conflicting (read/write) configuration over
just 2 threads (as opposed to N threads under GKLEE).

• In cases with loops whose iteration counts depend on the
number of threads and thread-blocks, GKLEEp still re-
duces one dimension of complexity. More specifically, in
a situation where GKLEE encodes races over N threads of
(loop-unravelled) length N , GKLEEp encodes races over
2 threads of (loop-unravelled) length N . Since GKLEEp

does not over-approximate the loops, it has a low false
alarm rate (none observed so far), making it particularly
useful for realistic programs which may contain loops
that cannot be precisely abstracted.

• We describe the conditions under which GKLEEp is an
exact race-checking approach, and also present when it
can miss bugs or give false alarms. In all our experiments
so far, these unusual patterns have not arisen, suggesting
that GKLEEp is practical.

II. BACKGROUND

A. Overview of Symbolic Execution

GKLEEp is a significant rewrite of GKLEE, but retains the
basic framework of its symbolic execution.

Fig. 1. GKLEE’s architecture.

GKLEE’s front-end compiles CUDA C++ programs into
LLVMcuda. Users may select some of the variables in their
C++ program to be symbolic. This is the only change necessary
to prepare a program for analysis under GKLEE. The GKLEE
executor is a symbolic virtual machine that understands the

CUDA memory- and execution models [10]. When the ex-
ecutor encounters an assignment statement containing sym-
bolic variables, it generates constraints relating the pre/post
states. When it encounters a conditional involving a symbolic
variable, it forks executions: (i) for one path, the underlying
constraint solver tries to make the conditional true by suitably
instantiating the symbolic variables, (ii) for the other path, the
instantiatons force a false outcome. At the end of a GKLEE
run, the user minimally gains a rich collection of test files that
ensure path coverage (these tests can be run on the GPU hard-
ware). Additionally, the user is able to obtain three classes of
analysis results: (i) data races, (ii) degree of warp divergences,
bank conflicts, and non-coalesced accesses, (iii) deadlocks.
CUDA-specific test pruning heuristics in GKLEE help retain
good coverage while dramatically reducing the number of
symbolic executions [8]. One can try GKLEE out on our web-
hosted remote execution portal, as well as download it.1

B. Race Checking

Race checking in concurrent programs has been studied
extensively. GPU program race checking differs in many
essential way from that studied in the non-GPU contexts:
(i) GPU programs are largely computation-oriented, syn-
chronizing sparingly through barriers and atomic operations,
(ii) the number of threads involved in GPU programs is vastly
more than entertained in non-GPU areas. Formal and semi-
formal methods in non-GPU contexts employ various lock-
set and happens-before based methods [11], [12]. In terms
of finding races with high assurance, one of the main im-
pediments has been schedule (or interleaving) explosion. For
example, five threads carrying out five sequential instructions
each generate 25!/(5!)5 ≈ 13 trillion interleavings. While
methods such as partial order reduction [13], [14] dramatically
reduce the number of interleavings to be examined, in the case
of CUDA programs we can do much better.

In [8], we show that symbolically executing one sched-
ule (called the canonical schedule) through all the threads
and recording potential conflicting pairs during this sched-
ule gives us the ability to detect a race if there is any
race. To understand this method, consider two threads t0
and t1 that have encountered a GPU barrier B0 (such
as __syncthreads() as in CUDA) and are proceeding
towards the next barrier B1. Let t0 perform N shared-
memory accesses s0,0; s0,1; . . . ; s0,N−1 in this barrier in-
terval, and likewise t1 perform N shared-memory accesses
s1,0; s1,1; . . . ; s1,N−1. In GKLEE, we run these threads sequen-
tially; meaning s00; s01; . . . ; s0,N−1; s10; s11; . . . ; s1,N−1.

thread t0 thread t1
p0,0 ? s0,0 p1,0 ? s1,0
. . . . . .
p0,N−1 ? s0,N−1 p1,N−1 ? s1,N−1

During this canonical run, for every potentially conflicting
pair s0,i and s1,j , we record (i) the path predicates under which

1http://www.cs.utah.edu/fv/GKLEE



these accesses are performed (say p0,i for s0,i and p1,j for
s1,j). We then try to determine if p0,i ∧ p1,j is satisfiable, and
if so whether under this constraint s0,i and s1,j are accessing
the same location with one of them being a write. In [15],
we prove that if there is any data race between these two
threads, one of the 〈s0,i, s1,j〉 pairs will be found to be racing.
Intuitively, the idea is that if there is a race R under an
arbitrary thread schedule, then the canonical schedule will
either run race-free till R, or encounter another race R

′
before

encountering R. The intuition is that any shared-memory
communication between two threads in a barrier interval is
a race; and if there were no prior communication before race
R, then all schedules leading to R are equivalent; else, R

′
,

the prior communication is the “earlier race.”
The saving due to canonical scheduling is essential for the

success of GKLEE. For example, with N being 5 and there
being 5 threads, instead of examining 13-trillion schedules to
check for races, under the canonical scheduling, one schedule
finds a race such as R

′
(or finds R itself) if there is any race.

In general, GKLEE will take k threads each with N steps
and run one schedule of length k×N , and encode all possible
pairs of accesses over the k ×N = O(k2N2) total accesses.
Under parametric flow equivalencing, GKLEEp will, whenever
possible, safely reduce the problem to 2 threads each with N
steps and run one canonical schedule of length 2 × N , and
encode all pairs over 2×N = O(4N2). If N is independent
of the number of threads (as is the case in GPU programs
where loop iteration counts are independent of the number
of threads or thread-blocks), then the savings are even more
dramatic. In fact, for debugging purposes, a loop abstraction
that does not go through all loop iterations is often the most
efficient compromise.

III. A MOTIVATING EXAMPLE

Let bid and tid stand for block ID and thread ID respectively.
A GPU program consists of tid-independent conditionals (TIC)
and tid-dependent conditionals (TDC), notice that the bid-
depdendent conditionals are also categorized into the TDC
domain. For simplicity purpose, we do not discuss the cases
where the conditions depend on symbolic inputs in this
section. An assignment statement such as x = 1 is a TIC
(with condition “true”). A conditional expression that does
not involve the tid is also a TIC. Since TICs only have one
successor state, we can group TICs into maximal basic blocks.
TDCs are conditionals that involve the tid. For instance, if
(tid%2) is used as a conditional expression, the even threads
will branch one way and the odd threads another way. We
put the conditional expression of a TDC into a basic block of
its own. Since basic blocks are basic units of execution, we
will model them as our GPU program “instructions.” Thus,
after a TDC instruction, some threads will be executing the
“then” sequence of instructions while the other threads will be
executing the “other” sequence.

A motivating example 2 manifests the advantages of
GKLEEp. In this kernel, 8K threads are involved, with four
blocks and 2K threads per block. Two arrays a and b are

// a[4 * 2048] in device memory;
// b[2048] in shared memory;
__global__ void test(unsigned * a) {
1: unsigned bid = blockIdx.x;
2: unsigned tid = threadIdx.x;
3:
4: if (bid % 2 != 0) {
5: if (tid < 1024) {
6: unsigned idx = bid * blockDim.x + tid;
7: b[tid] = a[idx] + 1; // Write of Race-1
8: if (tid % 2 != 0) {
9: b[tid] = 2; // Write of Race-2
10: } else {
11: if (tid > 0)
12: b[tid] = b[tid-1]+1; // Read of Race-2
13: }
14: } else {
15: b[tid] = b[tid-1]; // Read of Race-1
16: }
17: } else {
18: unsigned idx = bid * blockDim.x + tid;
19: b[tid] = a[idx] + 1;
20: }
}

Fig. 2. The motivating example

Fig. 3. Parametric flows for the motivating example

created and located in the device memory and shared memory
respectively.

Parametric flows are the control-flow equivalence classes
of threads that diverge in the same manner. In more detail,
GKLEEp’s race checking approach is one of (i) checking for
data races across a pair of threads within a single parametric
flow, and (ii) race checking between one thread (each) of two
different flows. The former is to cover intra-warp races while
the latter is to cover inter-warp races.

In our example, GKLEEp yields four parametric flows. Each
lozenge denotes a TDC, and each rectangle in the diagram
represent the TICs. GKLEEp starts its execution within one
thread. When a TDC is encountered, it spawns a new flow.
For example, when bid%2 6= 0 is encountered, two flows
are generated with the appropriate conditional path conditions
(namely bid%2 6= 0 and bid%2 = 0).

a) A Data Race: Whenever two memory accesses in-
volving a common location are performed concurrently by
two threads, with one of the accesses being a write, a data
race situation is created. Data races are almost impossible to



discern manually. They may never produce corrupt data results
upon testing because of the restricted nature of scheduling em-
ployed by typical GPU hardware. Most damaging of all, races
may license compiler transformations that are “unwarranted,”
resulting in an error that appears completely unrelated to the
root-cause, and is potentially very confusing.2 This example
has two race conditions:
• The Write access in Line 7 (done by Thread 1023) and

the Read access done by Thread 1024 in Line 15. This
is an inter-warp race – well-understood by anyone who
has studied GPUs and the CUDA execution semantics.

• Any odd-numbered thread (e.g., thread 1) and an even-
numbered thread that is numbered one higher (e.g., thread
2), both of which being in the range 0, . . . , 1023, involv-
ing the Write access on Line 9 and the Read access on
line 12. These lines are mutually exclusive; then why is
it a race? Reason: on one GPU, line 9 may be executed
before Line 12, and vice versa on another. Thus on GPU1,
the write occurs before the read, while on GPU2, it is the
other way. This “race” is noticed when programmers port
the code from GPU1 to GPU2. This race type was first
identified in [8] where it is called a porting race.

GKLEE requires around 30 seconds to explore all pairs of
potential conflicts and reveal these two errors. In constrast,
GKLEEp only needs 1.3 seconds.

Furthermore, for this example, GKLEEp reports a race if
and only if GKLEE does so too, making GKLEEp a sound and
lossless reduction of GKLEE.

IV. FOUNDATION

A. Parameterized Race and Deadlock Checking

To better understand GKLEEp, let us study the following
example where f1 and f2 are functions over the block id bid
and thread id tid.

void __global__ kernel1 (int *a, int b) {
__shared__ int temp[N];
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N) temp[idx] = a[f1(idx)] + b;
__syncthreads(); // A barrier
if (idx < N) a[idx] = temp[f2(idx)];

}

Suppose the barrier is removed from this example; we can
observe that the accesses a[idx] and a[f1(idx)] by different
threads may race depending on function f1. This can be
detected by examining the symbolic models of two threads
as follows (private variables in a thread are superscripted by
the thread id, and for simplicity we assume that threads t1
and t2 are in the same block but in different warps). More
formally, a race occurs if predicate t1.x 6= t2.x ∧ idt1 <

N ∧ idt2 < N ∧ f1(idxt1) = idxt2 ∧ |t2.x− t1.x| ≥ 32 holds.
A constraint solver (an SMT tool for us [9]) can determine
whether this predicate is satisfiable, and if so, it would return a
concrete satisfying instance. Accesses to temp can be analyzed
similarly (knowing f2).

2We are grateful to Vinod Grover of Nvidia for this insight.

thread t ∈ {t1, t2}
idxt = blockIdx.x ∗ blockDim.x+ t.x
if (idxt < N) read a[f1(idxt)]
if (idxt < N) write a[idxt]

s1

write k[i];
barrier;
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?

¬p1
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Fig. 4. Example CFGs.

To further illustrate these ideas, consider the control-flow
graph (CFG) given in Figure 4(a). This diagram shows how
statements s1 through s3 might be situated in some example
program. At first glance, this appears ill-synchronized: one
thread may take the s1 to s2 path encountering no barriers
while another may take the path through p1 encountering a
barrier. Our SMT techniques can determine whether these
paths are feasible, and flag a deadlock (due to textually non-
aligned barriers [16]) if so. Our approach checks whether all
threads make the same decision on the condition.

In Figure 4(b), both the left and the right branch contain
no barrier; thus they are considered well synchronized. We
now check for conflicting accesses some of which involve
conditionals. The conflict check includes the following ex-
pressions (here ∼ denotes the conflict relation, and 6∼ denotes
non-conflicting). Also let us use p ? s to denote an expression s
guarded by path condition p. Now, this CFG may be regarded
as consisting of one barrier interval (BI) containing five
accesses (1) s0, (2) p ? s1, (3) ¬p ? s2, (4) s4 and (5) ¬p ? s3.
Conflict freedom requires the pairwise comparison of these
five accesses for two parameterized threads; the 5 × 5 = 25
comparisons include the following. In GKLEEp, this procedure
is done by constructing a flow for each path condition and
checking the conflicts over two representative threads (with
symbolic ids).

pt2 ⇒ st10 6∼ st21 ¬pt2 ⇒ st10 6∼ st22
pt1 ∧ ¬pt2 ⇒ st11 6∼ st22 ¬pt2 ⇒ st14 6∼ st23

Note that GKLEEp makes such case analysis scale for very
large numbers of threads by choosing representative threads
from each flow equivalence class.

B. Soundness of the Reduction

Terminology: Here we refine the definitions of TIC and TDC
mentioned before: a variable is X-dependent if it is data-flow-
or control-flow- dependent on X, where X is a thread ID
(tid), block ID (bid), or symbolic input. If a variable v (or
condition c) is dependent on only the tid, then we can denote



it as v(tid) (or c(tid)). Access c(tid) ? v(tid) represents all
the accesses on v for all valid tids under condition c. In
GKLEEp, we use representative values of tid rather than all
concrete tids. The key of parameterized checking is to use
one representative thread to represent all threads with similar
behaviors. Or, from another perspective, the behaviors of all
these threads can be reduced to that of one representative
thread tr. The reduction is sound if and only if thread t’s each
access appears in the execution path is renaming equivalent to
that of tr, in the sense that any access performed by t must be
obtainable from those performed by tr by taking each access
expression—address read/written—and substituting t for tr.
Hence, if the variable or condition depends only on the tid,
then using a parameterized tid is sufficient; if the variable
or condition depends only the tid and bid, then it suffices to
use a parameterized tid and bid pair. When race checking is
performed, the parameterized expression is instantiated using
two distinct symbolic values for tid, bid, etc. All the accesses
within the same BI are compared pairwise to see whether their
addresses overlap.

The case when a variable or condition is (symbolic) input-
dependent is similar: we need to parametrize the inputs with
respect to the threads. Typically, CUDA threads access an
input, say an array A, in a space-dividing manner such that
thread tid in block bid typically accesses A(tid, bid). It is also
possible that array A is dependent on symbolic inputs and on
tid, bid; in this case, GKLEEp generates symbolic instances for
the symbolic inputs in the usual way as GKLEE does (based
on conditional-imposed constraints), and for each instance it
employs representative values for tid, bid.

When a variable depends on the accumulation of values
across more than two threads (we call such variables accu-
mulative variables), parametric reduction may be unsafe since
it considers only two threads rather than N threads. The Ap-
pendix discusses an approach which will be fully implemented
in future. Handling accumulative variables is very similar to
race checking – except that we consider multiple BIs rather
than one BI. When a kernel restricts the usage of accumulative
variables, our race checker satisfies some desirable properties.

Claim 1. GKLEEp reports a race if and only if GKLEE reports
this race for kernels where the addresses of all accesses are
not dependent on accumulative variables. That is, GKLEEp is
a sound abstraction of GKLEE for these kernels.

Currently GKLEEp over-approximates the value of an ac-
cumulative variable, this may introduce some false alarms,
e.g. when the accesses are control-dependent on this variable.
However GKLEEp will not miss the races; it will also use the
techniques described in the Appendix to rule out false alarms.

Claim 2. GKLEEp will report every race reported by GKLEE
for all kinds of kernels.

C. Parameterized Checking with SIMD

A feature of CUDA is SIMD execution: threads are grouped
in warps; the threads within a warp are executed in a lock-
step manner; while the threads in different warps (but in the

Fig. 5. Canonical schedule with SIMD.

same block) are synchronized through explicit barriers. Two
intra-warp threads can race only if they simultaneously write
to the same shared variable at the same instruction. Inter-
warp threads may race at different instructions under different
path conditions since warp scheduling is non-deterministic in
CUDA. Our parameterized method must account for the SIMD
characteristic when checking races.

GKLEE performs scheduling with respect to SIMD. The
threads within a warp are executed in a lock-step manner.
The warps (or blocks) themselves follow the usual canonical
method, synchronizing at the CUDA barriers. Figure 5 shows
how multiple warps are executed. In particular, in cases where
the threads in a warp diverge (i.e. make different decisions
over the same branch), the lock-step requirement is met by the
hardware by executing the two sides sequentially and merging
them at the first convergence point (e.g. the nearest common
post-dominator). This is adopted by GKLEE to take care of all
nuances of the CUDA semantics. GKLEEp inherits GKLEE’s
SIMD-aware scheduling scheme and makes it parameterized
(the parametric flow is marked in Figure 5 as bold arrows).
For an unconditional instruction, its execution by N threads
is modeled by using one parameterized thread. This thread
represents other threads in the same warp, in the different
warp, in the different group, and so on. Suppose this instruc-
tion accesses shared location a(tid), then threads may cause
a race when t1 6= t2 ∧ a(t1) ∼ a(t2) regardless whether t1 and
t2 are within the same warp or not.

When a conditional instruction is encountered, the threads
within a warp may diverge into two parts whose execution
order is not fixed. GKLEEp forks the flow and produces two
new nodes representing the two branches of the condition.
These nodes will not be merged, and subsequent executions
will start from each one. No matter what the execution order
of these two parts is, the race between the two parts can be
detected by examining whether the involved accesses conflict.

∃t1, t2 in the same warp : (c(t1) ? a(t1)) ∼ (¬c(t2) ? a(t2))

Clearly, this constraint is also applied when t1 and t2 are in
the different warps. Hence (c(t1) ? a(t1)) ∼ (¬c(t2) ? a(t2)) is
a generic constraint for detecting races relevant to condition
c; and we need not to distinguish the intra-warp and inter-
warp cases. This illustrates the following general principles



of using parametric flow tree to check races when respecting
the SIMD model. In sum, our parametric flow based analysis
respects SIMD by considering both intra-warp and inter-warp.
The case of intra- and inter- blocks is analogous.
• A node c1 ? a1 may conflict with node c2 ? a2 if c1 6= c2,

e.g. even for intra-warp threads.
• A node c ? a1 (note that c may be empty) may conflict

with node c ? a2. If a1 and a2 are at different instructions,
then only inter-warp threads (e.g. |t2 − t1| ≤ warp size)
should be considered.

So far we have discussed parameterized race checking,
soundness issues, and how to address SIMD. The next section
shows how to build the parametric flow tree.

V. PARAMETERIZED CHECKING: ALGORITHM

__shared__ unsigned shared[NUM];

__global__ void BitonicKernel(unsigned* values) {
1: unsigned int tid = threadIdx.x;
2: // Copy input to shared mem.
3: shared[tid] = values[tid];
4: __syncthreads();
5:
6: // Parallel bitonic sort.
7: for (unsigned k = 2; k <= blockDim.x; k *= 2)
8: for (unsigned j = k / 2; j > 0; j /= 2) {
9: unsigned ixj = tid ˆ j;
10: if (ixj > tid) {
11: if ((tid & k) == 0)
12: if (shared[tid] > shared[ixj])
13: swap(shared[tid], shared[ixj]);
14: else
15: if (shared[tid] < shared[ixj])
16: swap(shared[tid], shared[ixj]);
17: }
18: __syncthreads();
19: }
20:
21: // Write result.
22: values[tid] = shared[tid];
}

Fig. 6. The Bitonic Sort Kernel

We perform parameterized race checking by exploring a
parametric flow tree (PFT) for two representative threads. One
way is to construct a PFT for the entire program once and for
all, then instantiate this tree with two parameterized threads.
Another way (used in GKLEEp) builds the tree and performs
instantiations on the fly during symbolic execution. This
approach fits well with our overall implementation approach
and facilitates dynamic conflict checking (e.g. with respect to
SIMD).

In a program, conditions may be purely concrete and be
evaluated by GKLEEp to true or false immediately. Other
conditions may depend on tid, bid, and/or symbolic inputs,
and will be evaluated by forking new nodes in the PFT.

Roughly speaking, the construction of a PFT proceeds
as follows (here we focus on how the symbolic executor
constructs the tree, skipping most details discussed in §IV).

1) Starting with each barrier statement (the initial state
of the program can be assumed to have one), GKLEEp

launches one representative thread tid0 — a symbolic
value — for execution. So long as a conditional statement

is not encountered, this representative thread would keep
running until the next barrier is encountered.

2) When a tid− or bid− dependent condition is encoun-
tered, Two nodes are forked, one representing the threads
satisfying the condition, the other one for those satisfying
the negation of the condition.

3) Similarly, when a symbolic-input-dependent condition is
encountered, two nodes may be forked to represent the
true and false cases of the condition.

4) GKLEEp visits the nodes in an order consistent with
SIMD. The nodes sharing a common ancestor will be
“synchronized” at the first convergence point (i.e. the
first post-dominator in the program). This mimics how
diverged warps are executed in the hardware (see Section
IV-C for more details).

5) Once all nodes reach an explicit barrier
syncthreads(), the tree enters a synchronization

status, and starts checking various kinds of errors
(including intra-warp races).

Fig. 7. Parametric flow tree for Bitonic Sort.

Figure 7 shows a portion of the PFT of the Bitonic Sort
kernel. Since the first BI contains no conditional statements,
no forking is needed. In the next BI, the PFT shown in Figure
7 is constructed during the execution, conditions in two outer
loops are evaluated to be concrete values, so not shown in
the parametric flow tree. The top three conditions are TDCs
leading to node forking. The other four depend on both the
symbolic inputs and built-in variables (e.g. tid and bid), and
will lead to node forking too. The figure shows that flow 0
takes the path with path condition ixj > tid, (tid&k) == 0 and
shared[tid] > shared[ixj]. Note that memory accesses such as
shared[tid0] are guarded by ixj > tid0 ∧ (tid0&k) == 0.

In essence, GKLEEp follows a “canonical+SIMD” schedul-
ing approach to build a PFT for parameterized thread tid0.
Recall that we need another thread, say tid1, for conflict
checking. Naturally, tid1’s PFT can be obtained through t0’s
PFT by simply replacing tid0 with tid1. That is, by utilizing
the symmetry of CUDA kernels, we can avoid executing tid1
again to obtain its PFT. GKLEEp provides a facility to replace
and simplify symbolic expressions, making it convenient to
duplicate a PFT through cloning and thread id renaming.

For example, the bank conflict check requires two threads



involved, the write access shared[tid0] is guarded by a TDC
constraint: ixj0 > tid0 ∧ (tid0&k) == 0. Through renaming,
thread tid1’s write access becomes guarded by its own TDC
constraint ixj1 > tid1 ∧ (tid1&k) == 0.

Extra care must be taken on the relation of two threads,
which can be within the same warp, in different warps but in
the same block, or in different blocks. The following shows
the constraints over the thread ids for these scenarios.

Same Block and Same Warp:
(bid0 = bid1) ∧ (tid0 6= tid1) ∧ ( tid0

WarpSize
= tid1

WarpSize
)

Same Block and Different Warps:
(bid0 = bid1) ∧ (tid0 6= tid1) ∧ ( tid0

WarpSize
6= tid1

WarpSize
)

Different Blocks: (bid0 6= bid1)

VI. EXPERIMENTAL RESULTS

GKLEEp supports (through command-line arguments) race
and bank conflict detection for programs written with respect
to CUDA Compute Capability 1.x (also called “SDK 1.x”)
as well as Capability 2.x (memory coalescing checks cover
1.0 through 1.3 models). All experiments are performed on
a machine with Intel(R) Xeon(R) CPU @ 2.40GHz and
12GB memory. Our results about bank conflict and memory
coalescing checks were done for 2.x device capabilities.

Table I presents results from SDK 2.0 kernels while Table II
presents those from SDK 4.0 (many of these are also available
in 2.x). Here, #T denotes the number of threads analyzed.
Each cell contains a WW (write-write race), Ben. (benign race,
meaning same value written by two concurrent writes), a Y
or N (yes/no), or two numbers of the form A/B, where A is
the tool runtime (in seconds) and B is the number of control-
flow paths analyzed (i.e., the TICs branched in so many ways).
Most examples only generate one path, as there are no data-
dependent control flow variations (except Bitonic sort, where
these variations are essential to sorting).

Note that for Histogram64, GKLEE or GKLEEp explore
multiple paths when #T = 32 even though this example
does not contain data dependent control flows. The reason
for path generation is due to out-of-bound memory accesses
happening (these generate a case analysis as explained in
[15]). As another example, matrix multiplication using SDK
2.0 takes 362 seconds to explore the sole path using GKLEE
while it only takes 3.4 seconds under GKLEEp.

Since the occurrence of a race aborts the execution of GK-
LEE or GKLEEp, for benchmarks involving races, we measured
runtimes after switching off race checking.

Many of our results were obtained with respect to symbolic
inputs3. For instance, as reported in [8] for runs using GKLEE,
the Histogram64 example’s race will be almost impossible to
detect unless the first 10 bytes of a certain array are made
symbolic (the same symbolic setting was used in runs using
GKLEEp also).

3For details, please see our online benchmarks at http://www.cs.utah.edu/
fv/gklee-parametric-flow-benchmarks/

Tables (I and II ): These tables show that (i) all barriers
were found to be well synchronized; (ii) the performance
issues detected (bank conflict and non-coalesced memory
accesses) were calibrated to the same degree of severity both
by GKLEE and GKLEEp. (We suppress detailed results in terms
of the percentage of barrier intervals suffering from these
performance issues, summarizing the results as Y/N.)

While none of our examples have a deadlock, it is the case
that GKLEEp’s ability to detect deadlocks has the same power
as that in GKLEE. This is because GKLEEp accurately models
all the flows that may result in deadlocks (modeling more
threads within each flow equivalence class will not increase
the number or kinds of deadlocks detected).

As for data races, (iii) all races listed in [8] were also
detected by GKLEEp. We also found additional inter-warp
write-write races in SDK 2.0 kernels, thanks to the fact that
we ran those examples with more than one thread block.

The races in kernels named Reduction4-6 were similar. Let
us consider Reduction4 in some detail (more details on our
website). This example has an instruction if (blockSize ≥ 64)
sdata[tid] += sdata[tid + 32]; EMUSYNC; involving a read operation
sdata[tid + 32] and a write operation sdata[tid]; these are involved
in a read-write race by thread 0 and thread 32 that belong
to two distinct warps. GKLEEp was able to automatically
instantiate those two threads’ identifiers.

Figure 8 and Figure 9 show that GKLEEp outperforms
GKLEE with respect to different scales of number of threads,
when #T = 8K, GKLEEp speeds up matrix multiplication by
a factor of 300 times. When #T = 16K, GKLEEp speeds up
transposeCoalesced by a factor of around 500 times.

Figure 10 presents the only kernel that GKLEEp did not
perform better than GKLEE, since under GKLEE, all memory
accesses are evaluated to be ones with the concrete address,
whereas the time spent on constraint solving is still the main
overhead of GKLEEp. Figure 11 illustrates clock benchmark in
which GKLEEp performs several times faster than GKLEE.

New results on Histogram64. In [8] we reported that GKLEE
identified a possible WW race occurring within a warp. It has
been an open question whether such race will manifest in the
inter-warp cases (we could not run these larger models using
GKLEE). GKLEEp checks whether two threads from different
warps may cause such a race, and confirms that it will not
(this race is present only within a warp). This demonstrates
the added analysis power offered by GKLEEp.

VII. RELATED WORK

Past techniques [17], [18] generate finite-state abstractions
of parameterized systems, apply induction [19], or seek cut-
off bounds [20]. These techniques either require manual effort
and do not apply to GPUs. Others focus on multi-threaded
programs synchronizing using locks and semaphores [21].
These methods are impractical for GPU kernels.

There have been only a limited number of GPU-specific for-
mal analyzers. An instrumentation based technique is reported
[22] to find races and shared memory bank conflicts; in this



Kernels Race #T = 32 #T = 64 #T = 256 #T = 1,024 #T = 2,048 BC MC
GKLEE GKLEEp GKLEE GKLEEp GKLEE GKLEEp GKLEE GKLEEp GKLEE GKLEEp

Bitonic Sort T.O. 7.7/20 T.O 29.3/27 T.O 177.2/44 T.O 198/65 T.O T.O N Y
Histogram64 WW 15.8/10 25.9/9 23.2/1 25.8/1 75.4/1 120/1 725.3/1 387.6/1 2682.0/1 904.6/1 Y Y
Scalar Product 0.7/1 16.1/1 0.6/1 4.3/1 0.8/1 0.8/1 1.3/1 0.9/1 2.6/1 1.2/1 N Y
Matrix Mult 0.2/1 4.5/1 0.4/1 4.0/1 2/1 3.2/1 19/1 2.8/1 362.1/1 3.4/1 N Y
Reduction0 0.02/1 0.07/1 0.1/1 0.03/1 0.3/1 0.2/1 2.9/1 0.3/1 10.5/1 0.4/1 N Y
Reduction1 0.01/1 0.1/1 0.1/1 0.1/1 0.8/1 0.2/1 8.1/1 0.3/1 24.0/1 0.5/1 Y Y
Reduction2 0.02/1 0.1/1 0.03/1 0.1/1 0.2/1 0.1/1 2.9/1 0.3/1 10.2/1 0.4/1 N Y
Reduction3 0.01/1 0.1/1 0.03/1 0.1/1 0.3/1 0.1/1 2.7/1 0.3/1 10.0/1 0.4/1 N Y
Reduction4 WW 0.1/1 0.04/1 0.3/1 0.03/1 2.8/1 0.2/1 17.3/1 0.4/1 42.4/1 0.6/1 N Y
Reduction5 WW 0.1/1 0.04/1 0.3/1 0.03/1 2.8/1 0.2/1 11.4/1 0.4/1 21.3/1 0.5/1 N Y
Reduction6 WW 0.1/1 0.05/1 0.3/1 0.04/1 2.8/1 0.2/1 11.5/1 0.4/1 22.6/1 0.6/1 N Y
Scan Best 0.3/1 3.6/1 2.1/1 5.1/1 48.8/1 8.1/1 923.3/1 12.5/1 T.O. 26.6/1 Y Y
Scan Naive 0.04/1 0.2/1 0.2/1 0.4/1 3.4/1 0.5/1 66.0/1 0.9/1 291.8/1 15.2/1 N N
Scan WorkEfficient 0.1/1 0.6/1 0.4/1 0.8/1 12.1/1 1.2/1 250.8/1 2.1/1 T.O. 3.1/1 Y N
Scan Large 0.2/1 2.3/1 1.4/1 3.0/1 40.0/1 3.9/1 736.1/1 2.1/1 T.O. 2.1/1 Y Y
Bisect Small Ben. 2.2/1 105.9/1 3.5/1 108.8/1 10.6/1 108.7/1 36.0/1 108.8/1 58.1/1 233.7/1 N Y
Bisect Large Ben. T.O. 226.0/1 T.O. 203.0/1 T.O. 212.6/1 T.O. 218.5/1 T.O. 248.1/1 Y Y

TABLE I
SDK 2.0 KERNEL RESULTS. WE SET 7200 SECONDS AS THE THRESHOLD FOR TIME OUT (ABBREVIATED AS T.O.) “BC” AND “MC”

ARE THE ABBREVIATIONS OF “BANK CONFLICT” AND “COALESCED GLOBAL MEMORY ACCESSES”, AND THE RESULTS OF THESE TWO
CATEGORIES ARE ACQUIRED THROUGH GKLEEp .

Kernels Race #T = 1,024 #T = 2,048 #T = 4,096 #T = 8,192 #T = 16,384 BC MC
GKLEE GKLEEp GKLEE GKLEEp GKLEE GKLEEp GKLEE GKLEEp GKLEE GKLEEp

Clock 3.8/1 12.1/1 6.1/1 12.2/1 9/1 12.6/1 26.6/1 13/1 92.2/1 13.9/1 N Y
Scalar Product 50.9/1 97.9/1 213.2/1 200.2/1 902.9/1 410.9/1 T.O. 859.4/1 T.O. 1812.2/1 N Y
Histogram64 122.3/1 50.8/1 158.7/1 55.7/1 283.8/1 65.9/1 511.8/1 85.1/1 T.O. 120.0/1 Y N
Scan Short 36.3/1 18.1/1 92.5/1 32.3/1 216.4/1 62.6/1 714.8/1 116.7/1 3222.7/1 227.0/1 Y N
Scan Large 40.1/1 92.9/1 107.5/1 133.9/1 336.6/1 482.2/1 1175.1/1 761.4/1 6134.4/1 555.7 Y N
Copy 0.1/1 0.1/1 0.3/1 0.1/1 0.8/1 0.1/1 2.8/1 0.1/1 10.2/1 0.1/1 N Y
copySharedMem 0.8/1 0.3/1 1.6/1 0.6/1 11.1/1 0.3/1 23.2/1 0.7/1 172.7/1 0.6/1 N Y
transposeNaive 0.2/1 0.2/1 0.3/1 0.1/1 1.0/1 0.1/1 3.4/1 0.2/1 11.6/1 0.2/1 N N
transposeCoalesced 4.7/1 0.2/1 9.6/1 0.3/1 27.3/1 0.3/1 55.3/1 0.4/1 242.4/1 0.5/1 Y Y
transposeNoBankConflicts 0.8/1 0.4/1 1.8/1 0.4/1 11.3/1 0.4/1 24.1/1 0.5/1 179.2/1 0.7/1 N Y
transposeDiagonal 0.8/1 0.3/1 1.7/1 0.4/1 11.2/1 0.4/1 23.5/1 0.5/1 172.1/1 0.6/1 N Y
transposeFineGrained 0.8/1 0.3/1 1.7/1 0.4/1 11.1/1 0.4/1 23.2/1 0.5/1 170.0/1 0.6/1 N Y

TABLE II
SDK 4.0 KERNEL RESULTS. NO RACES ARE FOUND IN THESE KERNELS.
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Fig. 8. Matrix Multiplication (SDK 2.0)
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Fig. 9. TransposeCoalesced (SDK 4.0)

work, the program is instrumented with checking code, and
only those executions occurring in a platform-specific manner
are considered. A similar method [4] is used to find races.
Static analysis is performed first to locate possible candidates
for further dynamic analysis. These runtime methods cannot
accept symbolic inputs, nor are able to handle a large number
of threads in a parameterized way.

PUG [5] employs symbolic static analysis on individual
kernels—not whole programs. It also needs considerable man-
ual effort and suffers from the false alarm problem. It uses
loop invariants to avoid unrolling any loop. GPUVerify [23]
employs a similar analysis but improves the loop invariants

for accumulative variables so as to reduce the false alarm rate.
However finding a sufficient set of loop invariants for more
complicated patterns is still a challenge. In a recent workshop
paper [24], we have shown that for a class of CUDA programs,
one can parametrically check functional correctness (rather
than races). It requires the loops to be of particular formats.
This approach has not been shown to work for practically
sized CUDA programs and requires manual annotation effort.
In [25] the authors provide a static analysis based approach
to identify when concrete tests can represent families of tests
that cause similar (for race checking) control flows.

GKLEE [8] builds a virtual machine (VM) modeling thread
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computations on GPUs. When a GPU program is executed
in the VM, the tool checks for deadlocks, data races, and
performance bugs on a limited number of threads, but more
exhaustively than GKLEEp. However, as already shown, even
on the BitonicSort kernel (of about 50 lines of code), GKLEE
becomes impractical when the thread number is greater than
8. Another symbolic execution tool KLEE-CL [6] is not
parameterized and suffers from the same problem.

The work in this paper scales well, is tailored for CUDA and
also will work with emerging standards (e.g., OpenCL [26]).

VIII. CONCLUDING REMARKS

Parameterized reasoning is a formally undecidable problem,
and therefore in every domain, one has to find syntactic
restrictions under which one can check or prove correct-
ness parameterically. Symbolic execution based verification
is highly attractive in that one is able to bring the benefits
of formal analysis to real code (not models of the code)
written in practical languages (e.g., C++) and compiled using
actual compilers (e.g., LLVM). In this paper, we employ
parameteric-style reasoning in the symbolic execution context
for race detection in the context of GPU programs. Despite the
theoretical inexactness of this approach, our results show that
we have caught all the races found in our earlier efforts, found
some new ones, and have been able to scale verification to 16K
threads, finishing verification within acceptable runtimes. This
makes GKLEEp a practical race checking facility—the first of
its kind—that also allows programmers to choose symbolic
inputs and obtain code coverage over all the branches that
depend on these inputs.

In our future work, GKLEEp will be extended to handle
many of the advanced CUDA features including CUDA atom-
ics, multiple contexts, and libraries such as Thrust. Integration
into high-productivity development frameworks (e.g., Ecplise
Parallel Tools Platform) and handling of accumulative vari-
ables will also be a priority.
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APPENDIX

When a variable depends on the accumulation of values
across more than two threads, our method either (1) introduces
approximations by keeping the accumulative variable uncon-
strained (i.e. it can have any value), or (2) uses N threads
to calculate the exact value of the accumulative variable.
Specifically, consider the following concocted example where
the shared variable v’s value is the sum of A[i] for 0 ≤ i < N .
A loop containing a barrier is used to avoid Write-Write races
on v.

__shared__ int A[N]; // symbolic array A
for (int i = 0 ; i < N; i++) {

if (i == tid) v += A[i];
__syncthreads();

}
v is used in some accesses;

The first method suggested above will keep v’s final value
to be in (−∞,+∞). To obtain accurate results, we can fully
unroll the loop (note that N is a concrete bound), resulting in
v = ΣN−1

i=0 A[i].
The difficulty is to find out whether a variable is ac-

cumulative or not. We use a simple strategy which marks
variable v accumulative at an execution point when (1) it is
a shared/global variable (we also use variable to refer to an
element in an array), (2) it is written (updated) by the threads
with different values up to this execution point. It should be
noted that, while this seems to be similar to the definition of
data races, here we actually combine the accesses in all BIs to
check overlapping. The idea behind this strategy is that when
a shared variable is updated by multiple threads with different
values (e.g. in different BIs), its final value may depend on
the contributions from more than two threads. Any variable
that is data-flow-dependent of an accumulative variable is also
accumulative.

For illustration let us consider three case studies:
• In the motivating example, obviously local variable idx is

non-accumulative (it is actually tid- and bid- dependent).
Variable b[tid] is non-accumulative since it is “private”
to thread tid such that all the updates during the entire
execution are made by only this thread.

• In the above dummy loop example, shared variable v is
updated by thread i at iteration i for 0 ≤ i < N . Each
thread writes a different value to v (unless all the elements
in A is 0). Hence v is an accumulative variable.

• In the BitonicSort kernel in Figure 6, the first assignment,
shared[tid] = values[tid], writes to shared array shared.
Since each thread updates only its “private” element in
the array, shared[tid] is non-accumulative at this point.
Similarly local variables k, j, ixj are non-accumulative
(they are tid- and bid- dependent). The cases about
shared[tid] and shared[ixj] are more tricky. At the first
iteration, they are updated by only one thread, hence are
non-accumulative. However, in the subsequent iterations,
they may be updated by other threads, turning them
into accumulative variables. In other words, the same
location in shared may be updated by different threads

at different iterations; in this case its elements become
accumulative, and condition shared[tid] > shared[ixj]
may be evaluated imprecisely. Nevertheless, we will show
that this will not affect our ability to find out the races.

A. Handling Accumulative Variables

In a typical CUDA kernel, accumulative variables are sel-
dom referred by the addresses of accesses. However, as shown
in the BitonicSort kernel, it is not uncommon that accumulative
variables appear in the conditions guarding these accesses.

For this, a simple two-phase solving scheme can facilitate
handling accumulative variables during conflict checking. For
instance, suppose that accumulative variable v is used in a
condition guarding access A[f(tid)]. One optimization is to
first disregard condition c(v) (e.g. by havocing the value of
v) and check where A[f(tid)] leads to a race, if not then no
race exists. Otherwise we can take the second step to examine
c(v) ? A[f(tid)]. This simple optimization is able to boost
the performance substantially in the presence of accumulative
variables. In fact, for virtually all of our benchmark programs,
we do not need the second step since all race checks can be
resolved without considering accumulative variables – which
is typical for CUDA kernels.
... // the above loop
if (c(v)) {
A[f(tid)] = ...;

}

For example, for accesses shared[tid] and shared[ixj]
in the BitonicSort kernel, race checking requires examining
whether non-accumulative variables tid and ixj can overlap
in a BI. We can give the answer without considering the guard
condition share[tid] > shared[ixj] and its negation. The fact of
race-freedom is warranted by the following constraints (where
we subscript the variables with thread ids).

tid1 6= tid2 ⇒ ixj1 6= ixj2 ∧
ixj1 > tid1 ∧ ixj2 > tid2

The exclusion of an accumulative condition c when eval-
uating c ? a can be done implicitly. Suppose we do not
accurately model c’s value, e.g. another symbolic condition
c′ is used, then by evaluating both c′ ? a and ¬c′ ? a,
we can know whether a causes races due to the fact that
(c′ ∧ a ∨ ¬c′ ∧ a) = a. This method allows us, as indicated
in Section V, to dynamically build a branching tree and
check races without keeping track of where c is accumulative.
Only when a causes races should we consider c to eliminate
false alarms. For instance, when considering share[tid] >

shared[ixj], the values of shared[tid] and shared[ixj] may
be inaccurate when checking races over the accesses under this
condition. But this matters only when a race is found, in which
case we need to use the accurate values of the two variables
to rule out false race alarms. This trick releases us from the
burden of keeping track of most accumulative variables, which
are more related to functional correctness rather than races for
typical GPU programs.


