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ABSTRACT
The schedulability analysis is important in workflow mod-
eling. This paper presents a new approach to the schedu-
lability analysis of individual transition or transition se-
quences in Time constraint Petri nets (TCPNs). The reach-
ability of markings can also be checked based on the
schedulability analysis. If a specific transition sequence
is schedulable, the corresponding task sequence can com-
plete its execution successfully; otherwise, nonschedulable
transitions should be pinpointed to help adjust timing con-
straints. A technique for compositional timing analysis is
also proposed to deal with complex transition sequences,
which improves efficiency of analysis. We have also con-
structed an automated tool: TCPN-PIPE2 to facilitate the
schedulability analysis of workflow.
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1 Introduction

Managing time is important in designing and managing
workflow, a workflow model requires to deal with time is-
sues. The existing models for managing time are mainly
based on workflow graphs and Petri nets. Based on Work-
flow graphs, Eder et al. [3], Marjanovic [4] and Zhuge Hai
et al. [5] proposed their own workflow models dealing with
time issues.

Petri nets have gained many applications in the field
of workflow modeling [6, 7], since basic Petri nets lack the
temporal description, several extended models of Petri nets
considering time were proposed, such as Timed Petri nets
(Timed PNs) [8] and Time Petri nets (Time PNs) [2, 9].

Our work studies schedulability analysis of workflow
modeled in Timing Constraint Petri nets (TCPNs) which
were proposed by Tsai et al. [1]. As a visual model, TCPNs
are very expressive to depict time constraints; Furthermore,
TCPNs follow the weak firing rule [1], which is more ap-
propriate for modeling workflow than strong firing mode
that Time (Timed) PNs use. Though TCPNs have some ad-
vantages for modeling workflow, the formulas of EFBT and
LFET proposed in [1] are inconsistent with the meanings
of timing constraints; moreover, the approach to schedu-

lability analysis introduced by Tsai et al. is insufficient
to determine schedulability of individual transition. These
two shortcomings, in some respects, limit the usefulness of
TCPNs.

According to new formulas of EFBT and LFET dif-
ferent from those presented in [1], our main results include:
1) a new approach to schedulability analysis of individ-
ual transition and transition sequences, 2) a compositional
strategy for complex transition sequences, 3) an automated
tool for building, simulating and analyzing TCPN models.
This paper is organized as follows: Section 2 gives a brief
introduction to TCPNs. Section 3 presents the schedu-
lability analysis of individual transition and transition se-
quences. Section 4 describes the compositional schedu-
lability analysis. Section 5 introduces the automated tool
TCPN-PIPE2 and its application. Conclusions are drawn
in Section 6.

2 Timing Constraints Petri Nets and Work-
flow

2.1 Timing Constraint Petri Nets

Definition 1. [1] A timing constraint Petri net is a 6-tuple
(P, T, F, C, D, M0) where:

• P is a finite set of places.

• T is a finite set of transitions.

• F is a set of arcs which connect places and transitions.

• C is a set of integer pairs, (TCmin(ptj), TCmax(ptj)),
where ptj is either a place or a transition.

• D is a set of integer pairs, [FIREdur(tj)], where tj is a
transition.

• M0 is the initial marking function.

Without considering time constraints, P , T , F , and
M0 together define a Petri net, which could be denoted as
the underlying net UN= {P, T, F, M0}. Given a marking
M and a place p, M(p) denote the number of tokens con-
tained in p under the marking M .

In TCPN, TCmin(p)/TCmax(p) are the mini-
mum/maximum elapsed time intervals between the
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Figure 1. Time constraints of TCPN

token arrival time of p and the beginning/ending firing time
of p’s output transitions. A transition t with a time pair,
(TCmin(t), TCmax(t)), is said to be enabled under marking
M if (p ∈ •t)M(p) ≥ 1. A transition t, which is enabled
at time T0, is said to be firable during the time interval
[T0 + TCmin(t), T0 + TCmax(t)]. Here what we should
pay much attention on is that there is no guarantee that a
firable transition t can complete the firing successfully in
that the firing should take a period of time [FIREdur(t)].
For any place or transition which has non-explicit timing
constraints, the default value of a time pair is (0,∞) and
the default of transition duration is 0. Fig. 1 shows time
constraints in TCPN.

In comparison of other existing time-related Petri nets
such as Time or Timed PNs, TCPNs have three main ad-
vantages for modeling workflow: 1) TCPNs include more
expressive time constraints, in TCPN, given a workflow
schema, a workflow designer can assign execution du-
ration FIREdur(t) as well as relative executable interval
(TCmin(t),TCmax(t)) for each task or transition. Whereas
Timed PNs lack time pairs to restrict the execution of a
transition, Time PNs can merely depict the transition which
is instantaneous. In some cases, the resources or conditions
modeled by places should also be limited under a time in-
terval, the place time pair (TCmin(p), TCmax(p)) in TCPN
can fulfill this requirement. 2) Different from Timed and
Time PNs, TCPNs follow the weak firing mode. According
to [1], the strong firing mode may cause two conflict tran-
sitions to fire simultaneously, which contradicts the defini-
tion of conflict structures; it also might be prone to cause
dead transitions. 3) TCPNs are most suitable for systems
with conflict structures.

3 Schedulabililty Analysis Using TCPN

3.1 Basic Concepts

Here, we defined some other time constraints,
TOKENarr(p) is an absolute time representing the time
when the token arrives at place p; FIREbegin(t)/FIREend(t)
is the time when transition t begins/ends the firing;
EFBT(t)/LFET(t) denote the earliest firing beginning time
and the latest firing ending time of transition t after t is
enabled; IT(p)/OT(p) is a set of input/output transitions of
p; IP(t)/OP(t) is a set of input/output places of t.

Definition 2. A transition tj is said to be strongly firable
if each of the input places of tj currently has at least one

token at the same time with the consideration of the ac-
tual arrival time of tokens in each input place, That is, t j is
strongly firable if and only if:

EFBT(t) = Max{TOKENarr(pj) + TCmin(pj),
Max{TOKENarr(pj) : pj ∈ IP(tj)} + TCmin(tj)}

(3.1)

LFET(t) = Min{TOKENarr(pj) + TCmax(pj),
Max{TOKENarr(pj) : pj ∈ IP(tj)} + TCmax(tj)}

(3.2)

and
LFET(tj) − EFBT(tj) ≥ 0.

Definition 3. A transition tj is strongly schedulable if tj is
strongly firable and can complete firing successfully with
considering the arrival time of tokens in each input place.
That is, tj is strongly schedulable if and only if:

LFET(tj) − EFBT(tj) ≥ FIREdur(tj).

The formulas (3.1) and (3.2) were proposed by Di-
anxiang Xu et al. [2], they described that EFBT(tj) and
LFET(tj) in [1] are inconsistent with the meanings of time
constraints in TCPN.

3.2 Schedulability Analysis of A Transition

Figure 2. Relation of timing constraints

Theorem 1. If a transition t is strongly schedulable and
needs to complete the firing successfully, then EFBT(t) ≤
FIREbegin(t) ≤ LFBT(t). where LFBT(t) represents the
latest beginning firing time of t, LFBT(t) = LFET(t) −
FIREdur(t).

Proof. If a transition t is strongly schedulable, obviously,
LFET(t) − EFBT(t) ≥ FIREdur(t), and if FIREbegin(t) >
LFBT(t), then FIREend(t) = FIREbegin(t) + FIREdur(t) >
LFET(t), which means that t can not complete the firing,
thus we can directly draw the conclusion.

Based on FIREbegin(t), FIREend(t) ∈
[EFET(t), LFET(t)], where EFET(t) repre-
sents the earliest ending firing time of t, and
EFET(t)=EFBT(t) + FIREdur(t). The time interval
[EFBT(t), LFBT(t)] can be considered as the decision
span of a transition at run-time, the relation of these time
constraints can be illustrated via Fig. 2.

Theorem 2. For ∀pj ∈ OP(ti), if ti completes the fir-
ing successfully, then TOKENarr(pj) = FIREend(ti) ∈
[EFET(ti), LFET(ti)].



Proof. Because TOKENarr(pj) = FIREend(ti), if ti com-
plets its firing successfully, we can directly get this Theo-
rem.

Definition 4. For ∀pj ∈ IP(tj), Min(TOKENarr(pj)) and
Max(TOKENarr(pj)) can be used to represent the lower
and upper bound of TOKENarr(pj). According to formu-
las (3.1) and (3.2), we can define EFBT’(tj), LFET’(tj),
EFBT”(tj) and LFET”(tj) as follows:

EFBT’(tj) = Max{Min(TOKENarr(pj)) + TCmin(pj),
Max{Min(TOKENarr(pj)) : pj ∈ IP(tj)} + TCmin(tj)}

(3.3)

LFET’(tj) = Min{Max(TOKENarr(pj)) + TCmax(pj),
Max{Max(TOKENarr(pj)) : pj ∈ IP(tj)} + TCmax(tj)}

(3.4)

EFBT”(tj) = Max{Max(TOKENarr(pj)) + TCmin(pj),
Max{Max(TOKENarr(pj)) : pj ∈ IP(tj)} + TCmin(tj)}

(3.5)

LFET”(tj) = Min{Min(TOKENarr(pj)) + TCmax(pj),
Max{Min(TOKENarr(pj)) : pj ∈ IP(tj)} + TCmax(tj)}

(3.6)

and

EFBT’(tj) ≤ EFBT(tj) ≤ EFBT”(tj);
LFET”(tj) ≤ LFET(tj) ≤ LFET’(tj).

The schedulability of individual transition can be
checked as following three cases:
Case 1: For a transition tj with one input place pj:

EFBT(tj) =TOKENarr(pj)+
Max{TCmin(pj), TCmin(tj)};

LFET(tj) =TOKENarr(pj)+
Min{TCmax(pj), TCmax(tj)};

So the result of (LFET(tj) − EFBT(tj)) is not influ-
enced by the value of TOKENarr(pj).
Case 2: For a transition tj with several input places pj

(j = 1, · · · , k):
Based on Definition 4, we can get LFET”(tj) −
EFBT”(tj) ≤ LFET(tj) − EFBT(tj) ≤ LFET’(tj) −
EFBT’(tj).

• If LFET”(tj) − EFBT”(tj) ≥ FIREdur(tj) ⇒
LFET(tj) − EFBT(tj) ≥ FIREdur(tj), then tj is
strongly schedulable.

• If LFET”(tj) − EFBT”(tj) < FIREdur(tj) and
LFET’(tj)−EFBT’(tj) ≥ FIREdur(tj), then tj is per-
haps strongly schedulable or not. In this case, tj is in
an unsafe state.

• If LFET’(tj) − EFBT’(tj) < FIREdur(tj) ⇒
LFET(tj)−EFBT(tj) < FIREdur(tj), then tj can not
be strongly schedulable.

Case 1 and Case 2 are the sufficient conditions to de-
termine the schedulability of individual transition.
Case 3: For a transition tj (j = 1, 2, · · · , k) in a conflict
structure:

The strength of TCPNs over other time-related Petri
nets is in the modeling and analysis of conflict structures,
the handling of any transition in a conflict structure is same
as that of a transition with one input place.

3.3 Schedulability Analysis of a Transition Sequence

In TCPN, a marking Mn is said to be reachable if there ex-
ists a firing sequence σ = (M0t1M1 · · · tiMi · · · tnMn), or
simply transition sequence δ = (t1 · · · ti · · · tn) that trans-
forms M0 to Mn, and δ is schedulable with respect to im-
posed time constraints.

Definition 5. A transition sequence δ = (t1 · · · ti · · · tn) is
schedulable if and only if all transitions including in δ are
strongly schedulable.

In schedulability analysis of a transition se-
quence,there exists a Root Time for each transition
ti, it means that the token arrival times of input places
of ti can be represented by Root Time uniformly. The
schedulability of δ = (t1 · · · tn) will be checked as
follows:

Step1: Determine the initial marking M0 and suppose
TOKENarr(M0) is T0.

Step2: According to the sequence δ, find the input places
of ti (i = 1, · · · , n), identify the Root Time of ti and
token arrival time of input places, and then check the
schedulability of ti. If ti is strongly schedulable, then
do Step 3; else, the unreasonable timing constraints
should be modified to make ti re-schedulable.

Step3: FIREend(ti) should be computed for ti.

• For transition ti with one input place:

FIREend(ti) ∈[EFBT(ti) + FIREdur(ti),
LFET(ti)];

• For transition ti with several input places:

FIREend(ti) ∈[EFBT’(ti) + FIREdur(ti),
LFET’(ti)].

In Fig. 3, the schedulability of δ = (t1t2t3t4t5) is
checked as follows: Obviously, t1, t2, t3 and t4 are strongly
schedulable. the Root Time of t5 is T2, which represents
the firing end time of t2, token arrive times of p5 and p6 are
[T2 + 6, T2 + 7] and [T2 + 8, T2 + 9] respectively. Based
on schedulability of transition with several input places, t5

is also strongly schedulable, thus δ is schedulable based
on imposed time, the marking Mn = {p9} is reachable in
TCPN. Suppose T0 be the beginning time of total process,
FIREend(ti) based on T0 can be computed, the ending time



Figure 3. Schedulability of a transition sequence

of task sequence δ:TOKENarr(p9) is [T0 + 24, T0 + 29],
which means that if δ could complete its execution suc-
cessfully, it can’t end before T0 + 24 or after T0 + 29.

In a workflow modeling with TCPN, transition se-
quence δ can represent a task sequence. If δ is schedulable,
for every task or transition ti ∈ δ, LFET(ti)−EFBT(ti) ≥
FIREdur(ti), there must exist a decision span for each task
at run-time, thus the total task sequence δ can complete the
execution successfully.

4 Compositional Analysis of Schedulability

In this section, we describe how to conduct schedulability
analysis by decomposing a firing sequence in UN into a
number of subsequences. We use EN(M) to denote the set
of transitions enabled under marking M . According to [2],
we can get the Definition 6:

Definition 6. Let σ1 = (M10t11M11 · · · t1iM1i · · · t1m

M1m) (m ≥ 1) and σ2 = (M20t21M21 · · · t2jM2j · · · t2n

M2n) (n ≥ 1) be two sequences in UN, where M10 and
M20 are reachable from M0. σ2 is composable with σ1 if
and only if M1m = M20 and EN(M1m) ∩ EN(M1m−1) −
{t1m} = ∅. The composition of σ2 with σ1, denoted as
σ1 + σ2, is

(M10t11M11 · · · t1iM1i · · · t1mM1mt21M21

· · · t2jM2j · · · t2nM2n)

Obviously, according to Definition 6, it is incorrect
to separate concurrent transitions while decomposing a se-
quence.

Theorem 3. Let σ2 be composable with σ1. δ1δ2 is
schedulable if and only if both δ1 and δ2 are schedulable.

Proof. Let σ1 = (M10t11M11 · · · t1iM1i · · · t1mM1m)
σ2 = (M20t21M21 · · · t2jM2j · · · t2nM2n)
δ1 = (t11 · · · t1i · · · t1m)
δ2 = (t21 · · · t2j · · · t2n)
δ1δ2 = (t11 · · · t1i · · · t1mt21 · · · t2j · · · t2n)
ADi = [EFBT(ti), LFET(ti)]

1. Suppose both δ1 and δ2 are schedulable. So
there exist two sequences of absolute firing
domains for checking the schedulability of

δ1 and δ2, say, (AD11 · · ·AD1i · · ·AD1m),
(AD21 · · ·AD2j · · ·AD2n), and for each ADi,
there is: LFET(ti) − EFBT(ti) ≥ FIREdur(ti),
Since σ2 is composable with σ1, so M1m = M20,
(AD11 · · ·AD1i · · ·AD1mAD21 · · ·AD2j · · ·AD2n)
is exactly the sequence of absolute firing domains
for checking the schedulability of δ1δ2. Thus δ1δ2 is
schedulable.

2. Suppose δ1δ2 is schedulable. There ex-
ists a sequence of absolute firing domains
for checking the schedulability of δ1δ2, say,
(AD11 · · ·AD1i · · ·AD1mAD21 · · ·AD2j · · ·AD2n).
Obviously, (AD11 · · ·AD1i · · ·AD1m) and
(AD21 · · ·AD2j · · ·AD2n) are sequences of ab-
solute firing domains for checking δ1 and δ2,
respectively. So, both δ1 and δ2 are schedulable.

Theorem 4. Let σi (1 ≤ i ≤ k) be sequences, and σi (2 ≤
i ≤ k) be composable with σi−1. δ1 · · · δk is schedulable
if and only if δi (1 ≤ i ≤ k) are all schedulable.

Proof. It is obvious if k = 2; if k = 3, then δ1δ2δ3 =
(δ1δ2)δ3. Let δ = δ1δ2, δ1δ2δ3 = δδ3. δδ3 is schedu-
lable iff δ and δ3 are schedulable iff δ1, δ2, and δ3 are
schedulable. Suppose δ = δ1 · · · δk−1 is schedulable iff
δi (1 ≤ i ≤ k − 1) are all schedulable. δ1 · · · δk = δδk.
δ1 · · · δk is schedulable iff δ and δk are schedulable iff δi

(1 ≤ i ≤ k) are all schedulable.

Theorem 5. Suppose sequence σ2 is composable with it-
self (called self-composable) and with sequence σ1 and
sequence σ3 is composable with σ2. Let δ = (δ2)k =
δ2 · · · δ2 · · · δ2, where the number of δ2 is k (k > 0). δ1δδ3

is schedulable if and only if δ1δ2δ3 is schedulable.

Proof. If σ2 = (M20t21M21 · · · t2iM2i · · · t2mM2m) is a
self-composable sequence, then M20 = M2m. For each ti

in δ2, the schedulability of ti does not change with times of
execution of δ2 increasing, thus the schedulability of (δ2)k

is same as the schedulability of δ2, and according to Theo-
rem 5, we can easily conclude this theorem.

Theorem 4 and Theorem 5 can simplify the schedu-
lability analysis of sequences containing loops. Note that
Theorems 3-5 are useful only if sequences can be decom-
posed, i.e., no concurrency is present at decomposition
markings.

5 Schedulabililty Analysis of a Workflow Ex-
ample Using TCPN-PIPE2

5.1 Description of TCPN-PIPE2

This subsection gives a brief description of TCPN-PIPE2,
which is developed based on an open-source software:
Platform Independent Petri Net Editor2(PIPE2). We have



applied the ideas of compositional schedulability analysis
to TCPN-PIPE2, the intent of which is to build, simulate,
and analyze TCPN models.

Figure 4. Phases of schedulability analysis process

Fig. 4 schematizes the schedulability analysis process
implemented through TCPN-PIPE2. Each ellipse repre-
sents a phase of the process and reports the name of each
module that supports it, we now give a more detail descrip-
tion of the modules contained in TCPN-PIPE2.

TCPN Editor: Supports direct model construction in the
TCPN formalism. The components in a TCPN model
can be directly modeled in this graphical user inter-
face, and automatically generates TCPN models en-
coded in XML format.

TCPN Simulator: Supports the simulation of TCPN
models by moving the tokens on the firing of transi-
tions, and performs simulation in step-by-step mode.
The result of simulation is a list of simulation data
such as: schedulability of transitions, Fire End of
transitions.

TCPN Analyzer: It has the duty of analyzing the simula-
tion data, and determining the schedulability of spec-
ified transition sequence. If sequence is not schedu-
lable, the Simulator can’t proceed until the time con-
straints are modified.

5.2 Comparisons

In [2], xu et al.proposed the compositional technique, but
this technique is based upon a totally different model:
TPNs. Compared with TPNs, TCPNs have distinctive
time constraints and transition firing rules; Moreover, the
schedulability analysis of TCPNs is different from that of
TPNs.

There are many other famous time-related tools, such
as TimeNET and F-net for stochastic Petri nets(SPNs),
ORIS, TINA and Opera for TPNs and so on. Here we
take TimeNet [10] and ORIS [11] for example, ORIS is
a tool for analyzing extended TPN models, named Pre-
emptive TPNs; TimeNET provides a unified framework for
modeling and performance evaluation of non-Markovian

stochastic Petri nets, they are both based upon different
time-related Petri nets models from TCPNs.

Compared with tools listed or unlisted above, the
functionality of TCPN-PIPE2 is somewhat limited. i.e.,
TCPN-PIPE2 can’t generate reachability graph, and can
only implement the state space analysis of basic Petri nets.

Although the functionality is limited, the expres-
sive semantics of TCPNs gives TCPN-PIPE2 a expressive
power, which permits the treatment of practical schedula-
bility problems. This tool provides an experiment platform
for future research about TCPNs, we are currently extend-
ing the capabilities of TCPN-PIPE2 to analyze TCPN mod-
els with more complicated behaviors, even the SPNs and
TPNs models.

5.3 Schedulability Analysis Using TCPN-PIPE2

Through TCPN-PIPE2, we modeled various time-
dependent workflow architectures. Here, we should
consider a famous workflow example: the processing of
complaints [6].

The TCPN model of this workflow is built in TCPN
Editor and shown in Fig. 5, in TCPN-PIPE2, we use
interval (0, 1000) to represent (0,∞). Without con-
sideration of timing constraints, the functional require-
ments of above cases are easily analyzed. For example,
δ = (t1γ4t8t9γ

kt11t12) γ4 = (t2t3t5t7) or (t2t5t3t7) or
(t2t3t7t5) or (t3t2t5t7) or (t3t2t7t5) or (t3t7t2t5), γ =
(t10t8t9);
is one of the four basic transition sequences in UN that
model the functional behaviors of correspondent workflow.
These four sequences can transform M0 to Mn = {p11}.

Next, we will present the schedulability analysis of
δ, according to Theorem 5, because γ is self-composable,
to check the schedulability of δ, we only need to check
the schedulability of δ0 = (t1γ4t8t9t11t12) (k = 0) and
δ1 = (t1γ4t8t9γt11t12) (k = 1), suppose γ4 = (t2t3t5t7).

After modifying timing constraints of t8 and t12 from
(1, 5)[2],(2, 5)[0] to (1, 8)[2],(2, 7)[0], δ0 and δ1 are both
schedulable, then δ is schedulable.

Table 1. FIRE END of transitions in δ

Transition Condition FIRE END
t1 null [T0 + 2, T0 + 3]
t2 null [T0 + 5, T0 + 7]
t3 null [T0 + 5, T0 + 8]
t5 null [T0 + 7, T0 + 10]
t7 null [T0 + 6, T0 + 10]
t8 k ≥ 0 [T0 + 10 + 5 × k, T0 + 18 + 15 × k]
t9 k ≥ 0 [T0 + 11 + 5 × k, T0 + 21 + 15 × k]
t10 k ≥ 1 [T0 + 12 + 5 × (k − 1), T0 + 25 + 15 × (k − 1)]
t11 k ≥ 0 [T0 + 13 + 5 × k, T0 + 26 + 15 × k]
t12 k ≥ 0 [T0 + 10 + 5 × (k + 1), T0 + 18 + 15 × (k + 1)]

Table. 1 shows the Fire End of transitions in δ based
on modified time constraints, k is the times that γ exe-
cutes, the value shown in table 1 is validated by TCPN-
PIPE2. Similarly, other three sequences are also schedula-
ble with respect to newly-modified timing constraints, the



Figure 5. TCPN model of the workflow

final marking Mn = {p11} is reachable.

6 Conclusions and Future Work

The contributions of this paper include:

1. A detailed approach to schedulability analysis of indi-
vidual transition and transition sequences.

2. A compositional technique to analyze the schedulabil-
ity of sequences with loops.

3. An analyzing tool for TCPN models: TCPN-PIPE2

An interesting research problem is how the compo-
sitional strategy can be extended to analyze nets with ir-
regular structures. Since there exist some weaknesses in
TCPN-PIPE2, extending the capabilities of this tool is our
on-going research task.
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